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Abstract

The ubiquity of missing values in real-world
datasets poses a challenge for statistical inference
and can prevent similar datasets from being ana-
lyzed in the same study, precluding many exist-
ing datasets from being used for new analyses.
While an extensive collection of packages and
algorithms have been developed for data imputa-
tion, the overwhelming majority perform poorly
if there are many missing values and low sample
sizes, which are unfortunately common charac-
teristics in empirical data. Such low-accuracy
estimations adversely affect the performance of
downstream statistical models. We develop a sta-
tistical inference framework for predicting the
target variable in the presence of missing data
without imputation. Our framework, RIFLE (Ro-
bust InFerence via Low-order moment Estima-
tions), estimates low-order moments of the under-
lying data distribution with corresponding confi-
dence intervals to learn a distributionally robust
model. We specialize our framework to ridge
linear regression, where the resulting min-max
problem is efficiently solved by applying the alter-
nating direction method of multipliers (ADMM)
on the dual problem. This framework can also
be adapted to impute missing data. We compare
RIFLE with state-of-the-art approaches (includ-
ing MICE, Amelia, MissForest, KNN-imputer,
MIDA, and Mean Imputer) in numerical experi-
ments. Our experiments demonstrate that RIFLE
outperforms other benchmark algorithms when
the percentage of missing values is high and/or
when the number of data points is relatively small.
RIFLE is publicly available1.
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1. Introduction
Machine learning algorithms have shown promise when
applied to various problems, including healthcare, finance,
social data analysis, image processing, and speech recog-
nition. However, this success mainly relied on the avail-
ability of large-scale, high-quality datasets, which may be
scarce in many practical problems, especially in medical
and health applications (Pedersen et al.; Sterne et al., 2009;
Beaulieu-Jones et al., 2018). Moreover, many experiments
and datasets suffer from the small sample size in such ap-
plications. Despite the availability of a small number of
data points in each study, an increasingly large number of
datasets are publicly available. To fully and effectively uti-
lize information on related research questions from diverse
datasets, information across various datasets (e.g., differ-
ent questionnaires from multiple hospitals with overlapping
questions) must be combined in a reliable fashion. After
appending these datasets together, the obtained dataset can
contain large blocks of missing values, as they may not
share the same features (Figure 1).

Figure 1. Consider the problem of predicting the trait y from
feature vector (x1, . . . ,x100). Suppose that we have access
to three data sets: The first dataset includes the measure-
ments of (x1,x2, . . . ,x40, y) for n1 individuals. The second
dataset collects data from another n2 individuals by measuring
(x30, . . . ,x80) with no measurements of the target variable y in
it; and the third dataset contains the measurements from the vari-
ables (x70, . . . ,x100, y) for n3 number of individuals. How one
should learn the predictor ŷ = h(x1, . . . ,x100) from these three
datasets?

Related Works: There are three general approaches for
handling missing values in classification and regression
tasks. A Naive method is to remove the rows containing
missing entries. However, such an approach is not an option
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when the percentage of missingness in a dataset is high.
For instance, as demonstrated in Figure 1, the entire dataset
will be discarded if we eliminate the rows with at least one
missing entry.

The most common approach for handling missing values in
a learning task is to impute them in a pre-processing stage.
The general idea behind data imputation approaches is that
the missing values can be predicted using the other available
data points and correlated features. Imputation algorithms
cover a wide range of methods, including imputing miss-
ing entries with the columns means Little & Rubin (2019,
Chapter 3) (or median), least-square and linear regression-
based methods (Raghunathan et al., 2001; Kim et al., 2005;
Zhang et al., 2008; Cai et al., 2006; Buuren & Groothuis-
Oudshoorn, 2010), matrix completion and expectation max-
imization approaches Dempster et al. (1977); Ghahramani
& Jordan (1994); Honaker et al. (2011), KNN based (Troy-
anskaya et al., 2001), Tree based methods (Stekhoven &
Bühlmann, 2012; Xia et al., 2017), and methods using dif-
ferent neural network structures. Appendix A presents a
comprehensive review of these methods.

The imputation of data allows practitioners to run standard
statistical algorithms requiring complete data. However, the
prediction model’s performance can be highly reliant on the
accuracy of the imputer. High error rates in the prediction
of missing values by the imputer can lead to the catastrophic
performance of the downstream statistical methods executed
on the imputed data.

Another class of methods for inference in the presence of
missing values relies on robust optimization over the un-
certainty sets on missing entries. Shivaswamy et al. (2006)
and Xu et al. (2009) adopt robust optimization to learn the
parameters of a support vector machine model. They con-
sider uncertainty sets for the missing entries in the dataset
and solve a min-max problem over those sets. The obtained
classifiers are robust to the uncertainty of missing entries
within the uncertainty regions. In contrast to the imputation-
based approaches, the robust classification formulation does
not carry the imputation error to the classification phase.
However, finding appropriate intervals for each missing en-
try is challenging, and it is unclear how to determine the
uncertainty range in many real datasets. Moreover, their
proposed algorithms are limited to the SVM classifier.

In this paper, we propose RIFLE (Robust InFerence via
Low-order moment Estimations) for the direct inference
of a target variable based on a set of features containing
missing values. The proposed framework does not require
the data to be imputed in a pre-processing stage. However,
it can also be used as a pre-processing tool for imputing
data. The main idea of the proposed framework is to esti-
mate the first and second-order moments of the data and
their confidence intervals by bootstrapping on the available

Figure 2. Prediction of the target variable without imputation. RI-
FLE estimates confidence intervals for low-order (first and second-
order) marginals from the input data containing missing values.
Then, it solves a distributionally robust problem over the set of all
distributions whose low-order marginals are within the estimated
confidence intervals.

data matrix entries. Then, RIFLE finds the optimal parame-
ters of the statistical model for the worst-case distribution
with the low-order moments (mean and variance) within the
estimated confidence intervals (See Figure 2). Compared
to Shivaswamy et al. (2006); Xu et al. (2009) we estimate
uncertainty regions for the low-order marginals using the
Bootstrap technique. Furthermore, our framework is not
restricted to any particular machine learning model, such as
support vector machines (Xu et al., 2009).

2. Robust Inference via Estimating Low-order
Moments

RIFLE is based on a distributionally robust optimization
(DRO) framework over low-order marginals. Assume that
(x, y) ∈ Rd × R follows a joint probability distribution P ∗.
A standard approach for predicting the target variable y
given the input vector x is to find the parameter θ that
minimizes the population risk with respect to a given loss
function `:

min
θ

E(x,y)∼P∗
[
`
(
x, y;θ

)]
. (1)

Since the underlying distribution of data is rarely available
in practice, the above problem cannot be directly solved.
The most common approach for approximating (1) is to
minimize the empirical risk with respect to n given i.i.d
samples (x1, y1), . . . , (xn, yn) drawn from the joint distri-
bution P ∗:

min
θ

1

n

n∑
i=1

`(xi, yi;θ).

The above empirical risk formulation assumes that all entries
of xi and yi are available. Thus, to utilize the empirical risk
minimization (ERM) framework in the presence of missing
values, one can either remove or impute the missing data
points in a pre-processing stage. Training via robust opti-
mization is a natural alternative in the presence of missing
data. Shivaswamy et al. (2006); Xu et al. (2009) suggest
the following optimization problem that minimizes the loss
function for the worst-case scenario over the defined uncer-
tainty sets per data points:

min
θ

max
{δi∈Ni}ni=1

1

n

n∑
i=1

`(xi − δi, yi;θ), (2)
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where Ni represents the uncertainty region of data point i.
Shivaswamy et al. (2006) obtains the uncertainty sets by
assuming a known distribution on the missing entries of
datasets. The main issue in their approach is that the con-
straints defined on data points are totally uncorrelated. Xu
et al. (2009) on the other hand defines Ni as a “box” con-
straint around the data point i such that they can be linearly
correlated. For this specific case, they show that solving the
corresponding robust optimization problem is equivalent to
minimizing a regularized reformulation of the original loss
function. Such an approach has several limitations: First, it
can only handle a few special cases (SVM loss with linearly
correlated perturbations on data points). Furthermore, Xu
et al. (2009) is primarily designed for handling outliers and
contaminated data. Thus, they do not offer any mechanism
for the initial estimation of xi when several vector entries
are missing. In this work, we instead take a distributionally
robust approach by consiering uncertainty on the distribu-
tion of the data instead of defining uncertainty set for each
data point. In particular, we aim to fit the best parameters
of a statistical learning model for the worst distribution in a
given uncertainty set by solving:

min
θ

max
P∈P

E(x,y)∼P [`(x, y;θ)], (3)

where P is an uncertainty set over the underlying distri-
bution of data. A key observation is that defining the un-
certainty set P in (3) is easier and computationally more
efficient than defining the uncertainty sets {Ni}ni=1 in (2).
In particular, the uncertainty set P can be obtained naturally
by estimating low-order moments of data distribution using
only available entries. To explain this idea and to simplify
the notations, let z = (x, y), µ̄z , E[z], and C̄z , E[zzT ].
While µ̄z and C̄z are typically not known exactly, one can
estimate them (within certain confidence intervals) from the
available data by simply ignoring missing entries. More-
over, we can estimate the confidence intervals via boot-
straping. Particularly, we can estimate µz

min,µ
z
max,C

z
min,

and Cz
max from data such that µz

min ≤ µ̄z ≤ µz
max and

Cz
min ≤ C̄z ≤ Cz

max with high probability (where the in-
equalities for matrices and vectors denote component-wise
relations). In Appendix B, we show how a bootstrapping
strategy can be used to obtain the confidence intervals de-
scribed above. Given these estimated confidence intervals
from data, (3) can be reformulated as

min
θ

max
P

EP [`(z;θ)]

s.t. µz
min ≤ EP [z] ≤ µz

max,

Cz
min ≤ EP [zzT ] ≤ Cz

max.

(4)

Gao & Kleywegt (2017) utilize the distributionally robust
optimization as (3) over the set of positive semi-definite
(PSD) cones for robust inference under uncertainty. While
their formulation considers `2 balls for the constraints on

low order moments of the data, we use `∞ constraints that
are computationally more natural in the presence of miss-
ing entries when combined with bootstrapping. Further-
more, while it can be applied to general convex losses, their
method relies on the ellipsoid and the existence of oracles
for performing the steps of the ellipsoid method, which is
not applicable in modern high-dimensional problems. More-
over, they assume concavity in data (the existence of some
oracle to return the worst-case data points) that is practically
unavailable even in convex loss functions (including linear
regression in our work).

3. Robust Linear Regression in the Presence
of Missing Values

Let us specialize our framework to the ridge linear regres-
sion model. In the absence of missing data, ridge regression
finds optimal regressor parameter θ by solving

min
θ

‖Xθ − y‖22 + λ‖θ‖22,

or equivalently by minimizing:

θTXTXθ − 2θTXTy + λ‖θ‖22. (5)

Thus, having the second-order moments of the data C =
XTX and b = XTy is sufficient for finding the optimal
solution. In other words, it suffices to compute the inner
product of any two column vectors ai, aj of X, and the
inner product of any column ai of X with vector y. Since
the matrix X and vector y are not fully observed due to the
existence of missing values, one can use the same approach
as (12) to compute the point estimators C0 and b0. These
point estimators can be highly inaccurate, especially when
the number of non-missing rows for two given columns is
small. In addition, if the pattern of missing entries does not
follow the MCAR assumption, the point estimators are not
unbiased estimators of C and b.

3.1. A Distributionally Robust Formulation of Linear
Regression

As we mentioned above, to solve the linear regression prob-
lem, we only need to estimate the second-order moments of
the data (XTX and XTy). Thus, the distributionally robust
formulation described in (4) is equivalent to the following
optimization problem for the linear regression model:

min
θ

max
C,b

θTCθ − 2bTθ + λ‖θ‖22

s.t. C0 − c∆ ≤ C ≤ C0 + c∆,

b0 − cδ ≤ b ≤ b0 + cδ,

C � 0,

(6)

where the last constraint guarantees that the covariance ma-
trix is positive and semi-definite. We dicuss the procedure
of estimating the confidence intervals (b0,C0, δ, and ∆) in
Appendix B.
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3.2. RIFLE for Ridge Linear Regression
Since the objective function in 6 is convex in θ (ridge re-
gression) and concave in b and C (linear), the minimization
and maximization sub-problems are interchangeable (Sion
et al., 1958). Thus, we can equivalently rewrite Problem (6)
as:

max
C,b

g(C,b)

s.t. C0 − c∆ ≤ C ≤ C0 + c∆,

b0 − cδ0 ≤ b ≤ b0 + cδ,

C � 0,

(7)

where g(b,C) = minθ θ
TCθ−2bTθ+λ‖θ‖2. Function g

can be computed in closed-form given any pair of (C,b) by
θ = (C + λI)−1b. Based on that, we can apply projected
gradient ascent to function g to find an optimal solution
of (7) as described in Algorithm 1. At each iteration of the
algorithm, we first perform one step of projected gradient
ascent on matrix C and vector b; then we update θ in closed-
form for the obtained C and b. We use C0 and b0 obtained
from Equation (12) (see Appendix B) as the initialization
points for C and b respectively. The projection of b to the

Algorithm 1 Projection Gradient Ascent on function
g(C,b) in the Presence of Missing Values

1: Input: C0,b0,∆, δ, T
2: Initialize: C = C0,b = b0.
3: for i = 1, . . . , T do
4: Update C = Π∆+

[
C + αθθT

]
5: Update b = Πδ(b− 2αθ)
6: Set θ = (C + λI)−1b
7: end for

box contraint b0−cδ ≤ b ≤ b0 +cδ can be done entriwise
and has the following closed-form

Πδ(bi) =


bi if b0i − cδi ≤ bi ≤ b0i + cδi,

b0i − cδi if bi ≤ b0i − cδi,
bi + cδi if b0i + cδi ≤ bi.

Theorem 1. Assume that D = ‖C0−C∗‖2F +‖b0−b∗‖22.
Then Algorithm 1 computes an ε-stationary solution of the
objective function in (7) in O

(
LD
ε

)
iterations, where L =

2
λ .

Proof. The proof is relegated to Appendix F.

In Appendix C, we show how using the acceleration method
of Nesterov can improve the convergence rate of Algo-

rithm 1 toO
(√

LD
ε

)
. A technical issue of Algorithm 1 and

its accelerated version presented in Appendix C is that apply-
ing the simultaneous projection of C to both box constraints
and the set of positive semidefinite matrices (Π∆+ [C]) is

challenging and cannot be done in closed-form. A more re-
silient approach to handle both constraints simultaneously is
to write the dual problem of the maximization problem and
handle the resulting constrained minimization problem with
the Alternating Direction Method of Multipliers (ADMM).

4. Solving the Dual Problem of the Robust
Ridge Linear Regression via ADMM

The Alternating Direction Method of Multipliers (ADMM)
is a popular algorithm for efficiently solving linearly con-
strained optimization problems (Gabay & Mercier, 1976;
Hong et al., 2016). It has been extensively applied to large-
scale optimization problems in machine learning and sta-
tistical inference in recent years (Assländer et al., 2018;
Zhang et al., 2018). Consider the following optimization
problem consisting of two blocks of variables x and y that
are linearly coupled:

min
w,z

f(w) + g(z)

s.t. Aw + Bz = c,
(8)

The augmented Lagrangian of the above problem can be
written as:

min
w,z

f(w) + g(z) +〈Aw + Bz− c,λ〉

+ρ
2‖Aw + Bz− c‖2,

(9)

ADMM schema updates the primal and dual variables itera-
tively as presented in Algorithm 2.

Algorithm 2 Schema of ADMM algorithm Applied to the
Augmented Lagrangian Problem

1: for t = 1, . . . , T do
2: wt+1 = argminw f(w) + 〈Aw + Bzt − c,λ〉 +

ρ
2‖Aw + Bzt − c‖2

3: zt+1 = argminz f(wt+1)+〈Awt+1 +Bz−c,λ〉+
ρ
2‖Awt+1 + Bz− c‖2

4: λt+1 = λt + ρ(Awt+1 + Bzt+1 − c)
5: end for

As we mentioned earlier, simultaneous projection of C to
the set of positive semi-definite matrices and the box con-
straint Cmin ≤ C ≤ Cmax in Algorithm 1 is computa-
tionally expensive. Moreover, careful step-size tuning is
necessary to avoid inconsistency and guarantee convergence
in that algorithm.

An alternative approach for solving Problem (6) that avoids
removing the PSD constraint in the implementation of Al-
gorithm 1 is to solve the dual of the inner maximization
problem. Since the maximization problem is concave with
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respect to C and b, and the relative interior of the feasi-
ble set of constraints is non-empty, the duality gap is zero.
Hence, instead of solving the inner maximization problem,
we can solve its dual which is a minimization problem. The-
orem 2 describes the dual problem of the inner maximization
problem in (6). Thus, Problem (6) can be alternatively for-
mulated as a minimization problem rather than a min-max
problem. We can solve such a constrained minimization
problem efficiently via the ADMM algorithm. As we will
show, the ADMM algorithm applied to the dual problem
does not need tuning of step size or applying simultaneous
projections to the box constraints and positive semi-definite
(PSD) constraints.

Theorem 2. (Dual Problem) Problem (6) can be equiva-
lently formulated as:

min
θ,A,B,d,e,H

−〈bmin,d〉+ 〈bmax, e〉

−〈Cmin,A〉+ 〈Cmax,B〉+ λ‖θ‖2

s.t. −θθT −A + B−H = 0,

2θ − d + e = 0,

A,B,d, e ≥ 0,

H � 0.

Proof. The proof is relegated to Appendix F.

To apply the ADMM method to the dual problem, we need
to divide the optimization variables into two blocks as in (8)
to solve both sub-problems in Algorithm 2 efficiently. To do
so, first, we introduce the auxiliary variables d

′
, e
′
,θ
′
,A
′

and B
′

to the dual problem. Also, let G = H + θ
′
θ
′T .

Therefore, Problem (2) is equivalent to:

min
θ,A,B,d,e,H

−〈bmin,d〉+ 〈bmax, e〉

−〈Cmin,A〉+ 〈Cmax,B〉+ λ‖θ‖2

s.t. B−A = G,

2θ − d + e = 0,

A = A
′
,B = B

′
,

d = d
′
, e = e

′
,θ = θ

′
,

A
′
,B
′
,d
′
, e
′ ≥ 0,

G � θ′θ′T .

(10)

Since handling both constraints on θ in Problem (2) is diffi-
cult, we interchange θ with θ

′
in the first constraint. More-

over, the non-negativity constraints on A,B,d and e are
exchanged with non-negativity constraints on A

′
,B
′
,d
′

and e
′
. Now, we show how to apply ADMM schema to

Problem (10) to obtain Algorithm 5. As we discussed ear-
lier, we consider two separate blocks of variables w =
(θ,d, e,G,B

′
,A
′
) and z = (d

′
, e
′
,θ
′
,B,A). Assign-

ing Γ,η,MA,MB ,µd,µe, and µθ to the constraints of

Problem (10) in order, we can write the corresponding aug-
mented Lagrangian function as:

min
θ,θ
′
,A,A

′
,B,B

′

d,d
′
,e,e
′
,G

−〈bmin,d〉+ 〈bmax, e〉

−〈Cmin,A〉+ 〈Cmax,B〉+ λ‖θ‖2

+〈A−A
′
,MA〉+ ρ

2‖A−A
′‖2F

+〈B−B
′
,MB〉+ ρ

2‖B−B
′‖2F

+〈d− d
′
,µd〉+ ρ

2‖d− d
′‖2

+〈e− e
′
,µe〉+ ρ

2‖e− e
′‖2

+〈θ − θ′ ,µθ〉+ ρ
2‖θ − θ

′‖2

+〈2θ − d + e,η〉+ ρ
2‖2θ − d + e‖2

+〈B−A−G,Γ〉+ ρ
2‖B−A−G‖2F

s.t. A
′
,B
′
,d
′
, e
′ ≥ 0,

G � θ′θ′T ,
(11)

At each iteration of the ADMM algorithm, the parameters
of one block are fixed, and the optimization problem is
solved with respect to the parameters of the other block.
The details of the aforementioned ADMM procedure for
optimizing (11) and its convergence analysis are presented
in Appendix D.
Remark 3. The optimal solution obtained from the ADMM
algorithm can be different from the one given by Algorithm 1
because we remove the positive semi-definite constraint on
C in the latter. We investigate the difference between solu-
tions of two algorithms in three cases: First, we generate
a small positive semi-definite matrix C∗ and the matrix of
confidence intervals (∆) as follows:

C∗ =

97 40 92
40 17 38
92 38 88

 , ∆ =

0.2 0.3 0.2
0.3 0.1 0.2
0.1 0.3 0.1

 .
Moreover, let b∗ and δ are generated as follows:

b∗ =

6.65
8.97
5.40

 , δ =

0.1
0.2
0.2

 .
Initializing both algorithms with a random matrix within
Cmin = C∗ −∆ and Cmax = C∗ + ∆, and a random
vector within bmin = b∗ − δ and bmax = b∗ + δ, ADMM
algorithm returns a different solution from Algorithm 1.
Besides, the difference in the performance of algorithms
during the test phase can be observed in the experiments on
synthetic datasets depicted in Figure 5 as well, especially
when the number of samples is smaller.

5. Experiments
In this section, we evaluate the performance of RIFLE on
a diverse set of inference tasks in the presence of miss-
ing values. We compare RIFLE’s performance to several
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state-of-the-art approaches for data imputation on synthetic
and real-world datasets. The experiments are designed in
a manner that the sensitivity of the model to factors such
as the number of samples, data dimension, types, and pro-
portion of missing values can be evaluated. The description
of all datasets used in the experiments can be found in Ap-
pendix G.

5.1. Generating MCAR and MNAR Missing Values
To evaluate RIFLE and other state-of-the-art imputation
approaches, we need to have access to the ground-truth
values of the missing entries. Hence, we artificially mask a
proportion of available data entries and predict them with
different imputation methods. A method performs better
than others if the predicted missing entries are closer to the
ground-truth values. To measure the performance of RIFLE
and the existing approaches on a regression task for a given
test dataset consisting of N data points, we use normalized
root mean squared error (NRMSE), defined as:

NRMSE =

√
1
N

∑N
i=1(yi − ŷi)2√

1
N

∑N
i=1(yi − ȳ)2

where yi, ŷi, and ȳ represent the true value of the i-th data
point, the predicted value of the i-th data point, and the
average of true values of data points, respectively. In all ex-
periments, generated missing entries follow either a missing
completely at random (MCAR) or a missing not at random
(MNAR) pattern. A discussion on the procedure of generat-
ing these patterns can be found in Appendix E.

5.2. Tuning Hyper-parameters of RIFLE
The hyper-parameter c in (6) controls the robustness of the
model by adjusting the size of confidence intervals. This pa-
rameter is tuned by performing a cross-validation procedure
over the set {0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 50, 100}, and the
one with the lowest NMRSE is chosen. The default value in
the implementation is c = 1 since it consistently performs
well over different experiments. Furthermore, λ, the hyper-
parameter for the ridge regression regularizer, is tuned by
choosing 20% of the data as the validation set from the set
{0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50}. To tune K, the number
of bootstrap samples for estimating the confidence intervals,
we tried 10, 20, 50, and 100. No significant difference is
observed in terms of the test performance for the above
values.

Furthermore, we tune the hyper-parameters of the compet-
ing packages as follows. For KNN-Imputer (Troyanskaya
et al., 2001), we try {2, 10, 20, 50} for the number of neigh-
bors (K) and pick the one with the highest performance.
For MICE (Buuren & Groothuis-Oudshoorn, 2010) and
Amelia (Honaker et al., 2011), we generate 5 different im-
puted data and pick the one with the highest performance
on the test data. MissForest has multiple hyper-parameters.

We keep the criterion as “MSE” since our performance eval-
uation measure is NRMSE. Moreover, we tune the number
of iterations and number of estimations (number of trees)
by checking values from {5, 10, 20} and {50, 100, 200}, re-
spectively. We do not change the structure of the neural net-
works for MIDA (Gondara & Wang, 2018) and GAIN (Yoon
et al., 2018), and the default versions are performed for im-
puting datasets.

5.3. RIFLE Convergence
We presented three algorithms for solving the robust linear
regression problem formulated in (6): Projected gradient
ascent (Algorithm 1, Nesterov acceleration method (Algo-
rithm 4), and Alternating Direction Method of Multipliers
(ADMM) (Algorithm 5) applied on the dual problem. We
established the convergence rate of the projected gradient
ascent and Nesterov acceleration methods in Theorem ,1
and Theorem ,5 respectively. To investigate the conver-
gence of the ADMM algorithm and its dependence on ρ,
we perform Algorithm 5 on the Super Conductivity dataset
(Description in Appendix G) with 30% MCAR missing val-
ues. Figure 3 demonstrates the convergence of the ADMM
algorithm for multiple values of ρ applied to the Super Con-
ductivity dataset as described above. As can be observed,
decreasing the value of ρ accelerates the ADMM conver-
gence to the optimal value. Note that for ρ = 0.2, the
objective function is smaller than the final value in the first
few iterations. The reason is that for those iterations, the
solution is not feasible (as observed in the right figure). The
final solution is the optimal feasible solution.

Figure 3. Convergence of ADMM algorithm to the optimal solu-
tion of Problem (2) for different values of ρ. The left plot measures
the objective function of Problem (2) per iteration (without con-
sidering the constraints), while the right plot demonstrates the
constraint violation of the algorithm per iteration. The constraint
violation can be measured by adding all regularization terms in the
augmented Lagrangian function formulated in Problem (11).

In the next experiment, we compare the three proposed algo-
rithms in terms of the number of iterations required to reach
a certain level of test accuracy on the Super Conductivity
dataset. The number of training samples is 1000, containing
40% of MCAR missing values on both input features and
the target variable. The test dataset contains 2000 samples.
As depicted in Figure 4, ADMM and Nesterov’s algorithms
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require less number of iterations to reach the ε-optimal so-
lution compared to Algorithm 1. However, the cost per
iteration of the ADMM algorithm (Algorithm 5) is higher
than the Nesterov acceleration and Algorithm 1.

Figure 4. The performance of the Nesterov acceleration method,
projected gradient ascent, and ADMM on the Super Conductivity
dataset vs. the number of iterations.

5.4. RIFLE Consistency

In Figure 5, we investigate the consistency of RIFLE on
synthetic datasets with different proportions of missing val-
ues. The synthetic data has 50 input features following a
jointly normal distribution with the mean whose entries are
randomly chosen from the interval (−100, 100). Moreover,
the covariance matrix equals Σ = SST where S elements
are randomly picked from (−1, 1). The dimension of S is
50 × 20. The target variable is a linear function of input
features added to a mean zero normal noise with a standard
deviation of 0.01. As depicted in Figure 5, RIFLE requires
fewer samples to recover the ground-truth parameters of the
model compared to MissForest, KNN Imputer, Expectation
Maximization (Dempster et al., 1977), and MICE. Amelia’s
performance is significantly good since the predictors have
a joint normal distribution and the linear underlying model.
Note that by increasing the number of samples, the NRMSE
of our framework converges to 0.01, which is the standard
deviation of the zero-mean Gaussian noise added to each
target value (the dashed line).

5.5. Data Imputation via RIFLE
As explained in Section 3, while the primary goal of RI-
FLE is to learn a robust regression model in the presence
of missing values, it can also be used as an imputation
tool. We run RIFLE and several state-of-the-art approaches
on five datasets from the UCI repository (Dua & Graff,
2017) (Spam, Housing, Clouds, Breast Cancer, and Parkin-
son datasets) with different proportions of MCAR miss-
ing values (the description of the datasets can be found in
Appendix G). Then, we compute the NMRSE of imputed
entries. Table 1 (see Appendix I) shows the performance
of RIFLE compared to other approaches for the datasets

Figure 5. Comparing the consistency of RIFLE, MissForest, KNN
Imputer, MICE, Amelia, and Expectation Maximization methods
on a synthetic dataset containing 40% of missing values.

where the proportion of missing values are relatively high(
n(1−p)

d ≈ O(1)
)

. RIFLE outperforms these methods in
almost all cases and performs slightly better than MissFor-
est, which uses a highly non-linear model (random forest)
to impute missing values.

Figure 6. Performance Comparison of RIFLE, MICE, and Miss-
Forest on four UCI datasets: Parkinson, Spam, Wave Energy Con-
verter, and Breast Cancer. For each dataset, we count the number
of features that each method outperforms the others.

5.6. Sensitivity of RIFLE to the Number of Samples
and Proportion of Missing Values

In this section, we analyze the sensitivity of RIFLE and other
state-of-the-art approaches to the number of samples and the
proportion of missing values. In the experiment in Figure 6,
we create 5 datasets containing 40%, 50%, 60%, 70%, and
80% of MCAR missing values, respectively, for four real
datasets (Spam, Parkinson, Wave Energy Converter, and
Breast Cancer) from UCI Repository (Dua & Graff, 2017)
(the description of the datasets can be found in Appendix G).



RIFLE: Imputation and Robust Inference from Low Order Marginals

Given a feature in a dataset containing missing values, we
say an imputer wins that feature if the imputation error in
terms of NRMSE for that imputer is less than the error of the
other imputers. Figure 6 reports the number of features won
by each imputer on the created datasets described above. As
we observe, the number of wins for RIFLE increases as we
increase the proportion of missing values. This observation
shows that the sensitivity of RIFLE as an imputer to the
proportion of missing values is less than MissForest and
MICE in general.

Figure 6 does not show how the NRMSE of one imputer
is changed when the proportion of missing values is in-
creased. Next, we analyze the sensitivity of RIFLE and
several imputers to change in missing value proportions.
Fixing the proportion of missing values, we generate 10
random datasets containing missing values in random lo-
cations on the Drive dataset (the description of datasets is
available in Appendix G). We impute the missing values
for each dataset with RIFLE, MissForest, Mean Imputation,
and MICE. Figure 7 shows the average and the standard

Figure 7. Sensitivity of RIFLE, MissForest, Amelia, KNN Imputer,
MIDA, and Mean Imputer to the percentage of missing values on
the Drive dataset. Increasing the percentage of missing value en-
tries degrades the benchmarks’ performance compared to RIFLE.
KNN-imputer implementation cannot be executed on datasets con-
taining 80% (or more) missing entries. Moreover, Amelia and
MIDA do not converge to a solution when the percentage of miss-
ing value entries is higher than 70%.

deviation of these 4 imputers’ performances for different
proportions of missing values (10% to 90%). Figure 7 de-
picts the sensitivity of MissForest and RIFLE to the propor-
tion of missing values in the Drive dataset. We select 400
data points for each experiment with different proportions
of missing values (from 10% to 90%) and report the average
NRMSE of imputed entries. Finally, in Figure 8, we have
evaluated RIFLE and other methods on the BlogFeedback
dataset (see Appendix G) containing 40% missing values.
The results show that RIFLE’s performance is less sensitive
to decreasing the number of samples.

Figure 8. Sensitivity of RIFLE, MissForest, MICE, Amelia, Mean
Imputer, KNN Imputer, and MIDA to the number of samples
for the imputations of Blog Feedback dataset containing 40% of
MCAR missing values. When the number of samples is limited,
RIFLE outperforms other methods, and its performance is very
close to the non-linear imputer MissForest for larger samples.

5.7. Performance Comparison on Real Datasets
In this section, we compare the performance of RIFLE to
several state-of-the-art approaches, including MICE (Bu-
uren & Groothuis-Oudshoorn, 2010), Amelia (Honaker
et al., 2011), MissForest (Stekhoven & Bühlmann,
2012), KNN Imputer (Raghunathan et al., 2001), and
MIDA (Gondara & Wang, 2018). There are two primary
ways to do this. One method to predict a continuous target
variable in a dataset with many missing values is first to im-
pute the missing data with a state-of-the-art package, then
run a linear regression. An alternative approach is to directly
learn the target variable, as we discussed in Section 3.

Table 2 compares the performance of mean imputation,
MICE, MIDA, MissForest, and KNN to that of RIFLE
on three datasets: NHANES, Blog Feedback, and super-
conductivity. Both Blog Feedback and Superconductivity
datasets contain 30% of MNAR missing values generated
by Algorithm 6, with 10000 and 20000 training samples,
respectively. The description of the NHANES data and its
distribution of missing values can be found in Appendix G.

Conclusion: In this paper, we proposed a distributionally
robust optimization framework over the distributions with
the low-order marginals within the estimated confidence
intervals for inference and imputation of datasets in the
presence of missing values. We developed algorithms for
robust ridge linear regression with convergence guarantees.
In particular, we apply the alternating direction method
of multipliers (ADMM) on the dual of the original min-
max problem. The resulting algorithm is convergent to
the original problem’s optimal solution. The performance
of the method is evaluated on synthetic and real datasets
with different numbers of samples, dimensions, missing
value proportions, and types of missing values. In most
experiments, RIFLE consistently outperforms other existing
methods.
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A. A Review of Missing Value Imputation Methods in the Literature
The fundamental idea behind many data imputation approaches is that the missing values can be predicted based on the
available data of other data points and correlated features. One of the most straightforward imputation techniques is to
replace missing values by the mean (or median) of that feature calculated from what data is available see Little & Rubin
(2019, Chapter 3). However, this naı̈ve approach ignores the correlation between features and does not preserve the variance
of features. Another class of imputers has been developed based on the least-square methods (Raghunathan et al., 2001;
Kim et al., 2005; Zhang et al., 2008; Cai et al., 2006). Raghunathan et al. (2001) learns a linear model with multivariate
Gaussian noise for the feature with the least missing entries. It repeats the same procedure on the updated data to impute the
next feature with the least missing entries until all features are completely imputed. One drawback of this approach is that
the error from the imputation of previous features can be propagated to subsequent features. To impute entries of a given
feature in a dataset, Kim et al. (2005) learns several univariate regression models that consider that feature as the response.
Then it takes the average of these predictions as the final value of imputation. This approach fails to learn the correlations
involving more than two features.

Many more complex algorithms have been developed for imputation, although many are sensitive to initial assumptions and
may not converge. For instance, KNN-Imputer imputes a missing feature of a data point by taking the mean value of the K
closest complete data points (Troyanskaya et al., 2001). MissForest, on the other hand, imputes the missing values of each
feature by learning a random forest classifier using other training data features (Stekhoven & Bühlmann, 2012). MissForest
does not need to assume that all features are continuous (Honaker et al., 2011) or categorical (Schafer, 1997). However, both
KNN-imputer and MissForest do not guarantee statistical or computational convergence for their algorithms. Moreover,
when the proportion of missing values is high, both are likely to have a severe drop in performance, as demonstrated in
Section 5. The Expectation Maximization (EM) algorithm is another popular approach that learns the parameters of a prior
distribution on the data using available values based on the EM algorithm of Dempster et al. (1977); see also Ghahramani &
Jordan (1994) and Honaker et al. (2011). The EM algorithm is also used in Amelia, which fits a jointly normal distribution
to the data using EM and the bootstrap technique (Honaker et al., 2011). While Amelia demonstrates a superior performance
on datasets following a normal distribution, it is highly sensitive to the violation of the normality assumption (as discussed
in Bertsimas et al. (2017)). Ghahramani & Jordan (1994) adopt the EM algorithm to learn a joint Bernoulli distribution for
the categorical data and a joint Gaussian distribution for the continuous variables independently. While those algorithms
can be viewed as inference methods based on low-order estimates of moments, they do not consider uncertainty in such
low-order moments estimates. By contrast, our framework utilizes robust optimization to consider the uncertainty around the
estimated moments. Moreover, our optimization procedure for imputation and prediction is guaranteed to converge despite
some of the algorithms mentioned above.

Another popular method for data imputation is multiple imputations by chained equations (MICE). MICE learns a parametric
distribution for each feature conditional on the remaining features. For instance, it assumes that the current target variable
is a linear function of other features with a zero-mean Gaussian noise. Each feature can have its distinct distribution and
parameters (e.g., Poisson regression, logistic regression). Based on the learned parameters of conditional distributions,
MICE can generate one or more imputed datasets (Buuren & Groothuis-Oudshoorn, 2010). More recently, several neural
network-based imputers have been proposed. GAIN (Generative Adversarial Imputation Network) learns a generative
adversarial network based on the available data and then imputes the missing values using the trained generator (Yoon et al.,
2018). One advantage of GAIN over other existing GAN imputers is that it does not need a complete dataset during the
training phase. MIDA (Multiple Imputation using Denoising Autoencoders) is an auto-encoder-based approach that trains a
denoising auto-encoder on the available data considering the missing entries as noise. Similar to other neural network-based
methods, these algorithms suffer from their black-box nature. They are challenging to interpret/explain, making them
unpopular in mission-critical healthcare approaches. In addition, no statistical or computational guarantees are provided for
these algorithms.

Bertsimas et al. (2017) formulates the imputation task as a constrained optimization problem where the constraints are
determined by the underlying classification model such as KNN (k-nearest neighbors), SVM (Support Vector Machine),
and Decision Trees. Their general framework is non-convex, and the authors relax the optimization for each choice of the
cost function using first-order methods. The block coordinate descent algorithm then optimizes the relaxed problem. They
show the convergence and accuracy of their proposed algorithm numerically, while a theoretical analysis that guarantees the
algorithm’s convergence is absent in their work.
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B. Estimating Confidence Intervals of Low-order Moments
In this section, we explain the methodology of estimating confidence intervals for E[zi] and E[zizj ]. Let Xn×d and y be
the data matrix and target variables for n given data points respectively whose entries are in R̃ = R ∪ {∗}, where ∗ symbol
represents a missing entry. Moreover, assume that ai represents the i-th column (feature) of matrix X. We define:

ãi(k) =

{
ai(k) if ai(k) 6= *
0 if ai(k) = *

Thus, ã is obtained by replacing the missing values with 0. We estimate the confidence intervals for the mean and covariance
of features using multiple bootstrap samples on the available data. Let C0[i][j] and ∆0[i][j] be the center and the radius of
the confidence interval for C[i][j], respectively. We compute the center of the confidence interval for C[i][j] as follows:

C0[i][j] =
1

mij
ãTi ãj (12)

where mi = |{k : ai(k) 6= ∗}| and mij = |{k : ai(k) 6= ∗,aj(k) 6= ∗}|. This estimator is obtained from the rows where
both features are available. More precisely, let M be the mask of the input data matrix X defined as:

Mij =

{
0, if Xij is missing,
1, otherwise.

Assume that mij = (MTM)ij , which is the number of rows in the dataset where both features i and j are available. To
estimate the confidence intervals for Cij , we use Algorithm 3. First, we select multiple (K) samples of size N = mij from
the rows where both features are available. Each one of these samples with size mij is obtained by applying a bootstrap
sampler (sampling with replacement) on the mij rows where both features are available. Then, we compute the second-order
moment of two features for each sample.

To find the radius of confidence intervals for each given pair (i, j) of features, we choose k different bootstrap samples
with length n on the rows where both features i and j are available. Then, we compute C0[i][j] of two features in each
bootstrap sample. The standard deviation of these estimations determines the radius of the corresponding confidence interval.
Algorithm 3 summarizes the required steps for computing the confidence interval radius for the ij-th entry of covariance
matrix ∆. Note that the confidence intervals for µ can be computed similarly. Having C0 and ∆, the confidence interval

Algorithm 3 Estimating Confidence Interval Length ∆ij for Feature i and Feature j.
1: Input: K : Number of bootstrap estimations
2: for t = 1, . . . ,K do
3: Pick n samples with replacement from the rows where both i-th and j-th are available.

Let (X̂i1, X̂j1), . . . , (X̂in, X̂jn) be the i-th and j-th features of the selected samples
4: Ct = 1

n

∑n
r=1 X̂irX̂jr

5: end for
6: ∆ij = std(C1, C2, . . . , CK)

for the matrix C is computed as follows:

Cmin = C0 − c∆
Cmax = C0 + c∆,

Computing bmin and bmax can be done in the same manner. The hyper-parameter c is defined to control the robustness of
the model by tuning the length of confidence intervals. A larger c corresponds to bigger confidence intervals and, thus, a
more robust estimator. On the other hand, large values for c lead to very large confidence intervals that can adversely affect
the performance of the trained model.

Remark 4. Since the computation of confidence intervals for different entries of the covariance matrix are independent of
each other, they can be computed in parallel. In particular, if γ cores are available, d/γ features (columns of the covariance
matrix) can be assigned to each one of the available cores.
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C. Solving Robust Ridge Regression with the Optimal Convergence Rate
The convergence rate of Algorithm 1 to the optimal solution of Problem (6) can be slow in practice since the algorithm
requires to do a matrix inversion for updating θ and applying the box constraint to C and b at each iteration. While we
update the minimization problem in closed-form with respect to θ, we can speed up the convergence rate of the maximization
problem by applying Nesterov’s acceleration method to function g(b,C) in (7). Since function g is the minimum of convex
functions, its gradient with respect to C and b can be computed using Danskin’s theorem. Algorithm 4 describes the steps
to optimize Problem (7) using Nesterov’s acceleration method.

Algorithm 4 Applying the Nesterov’s Acceleration Method to Robust Linear Regression
1: C0,b0,∆, δ, T
2: Initialize: C1 = C0,b1 = b0, γ0 = 0, γ1 = 1.
3: for i = 1, . . . , T do

4: γi+1 =
1+
√

1+4γ2
i

2

5: YCi
= Ci + γi−1

γi+1
(Ci −Ci−1)

6: Ci+1 = Π∆+

(
YCi + 1

Lθθ
T
)

7: Ybi = bi + γi−1
γi+1

(bi − bi−1)

8: bi+1 = Πδ(Ybi − 2θ
L )

9: Set θ = (Ci+1 + λI)−1bi+1

10: end for

Theorem 5. Assume that D = ‖C0 −C∗‖2F + ‖b0 − b∗‖22. Then Algorithm 4 computes an ε-stationary solution of the

objective function in (7) in O
(√

LD
ε

)
iterations, where L = 2

λ .

Proof. The proof is relegated to Appendix F.

D. ADMM Algorithm For Solving the Dual Problem
For the simplicity of presentation, assume that ct1 = bmin −µtd + ρd

′t + ηt, ct2 = −bmax −µte + ρe
′t − ηt, ct3 = −µθ +

ρθ
′t−2ηt, Dt

1 = ρA
′t−ρGt+Γt−Mt

A+Cmin, and Dt
2 = ρB

′t+ρGt−Γt−Mt
B−Cmax. Algorithm 5 describes the

ADMM algorithm applied to Problem (10). At each iteration of the ADMM algorithm, the parameters of one block are fixed,
and the optimization problem is solved with respect to the parameters of the other block. For the simplicity of presentation,
let ct1 = ρθ

′t−µtθ−2ηt, ct2 = ρd
′t−µtd−bmin +ηt, ct3 = ρe

′t−µte+bmax−ηt,Dt
1 = ρA

′t−ρGt+Γt−Mt
A+Cmin,

and Dt
2 = ρB

′t + ρGt − Γt −Mt
B −Cmax.

Corollary 6. If the feasible set of Problem (6) has non-empty interior, then Algorithm 5 converges to an ε-optimal solution
of Problem (10) in O( 1

ε ) iterations.

Proof. Since the inner maximization problem, in (6) is convex, and its feasible interior set is not empty, the duality gap is
zero by Slater’s condition. Thus, according to Theorem 6.1 in He & Yuan (2015), Algorithm 5 converges to an optimal
solution of the primal-dual problem with a linear rate. Moreover, the sequence of constraint residuals converges to zero with
a linear rate as well.

We have two non-trivial problems containing positive semi-definite constraints. The sub-problem with respect to G can be
written as:

min
G
〈Bt −At −G,Γt〉+

ρ

2
‖Bt −At −G‖2F

s.t. G � θ′tθ′tT ,
(13)

By completing the square, and changing the variable G
′

= G− θ′tθ′tT , equivalently we require to solve the following
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Algorithm 5 Applying ADMM to the Dual Problem of Robust Linear Regression
1: Given: bmin,bmax,Cmin,Cmax, λ, ρ
2: Initialize: C1 = C0,b1 = b0, γ0 = 0, γ1 = 1.
3: for t = 0, . . . , T do
4: θt+1 = 1

6λ+7ρ (2ct1 − 2ct2 − 3ct3)

5: dt+1 = 1
6λ+7ρ ( 6ρ+4λ

ρ ct1 + 4ρ+4λ
ρ ct2 + 2ct3)

6: et+1 = 2
6λ+7ρ (ρ+2λ

ρ ct1 + 3ρ+2λ
ρ ct2 − ct3)

7: A
′t+1 = max(At +

Mt
A

ρ , 0)

8: B
′t+1 = max(Bt +

Mt
B

ρ , 0)

9: Gt+1 = [Bt −At + Γt

ρ − θ
′tθ
′tT ]+ + θ

′tθ
′tT

10: d
′t+1 = max(dt +

µtd
ρ , 0)

11: e
′t+1 = max(et +

µte
ρ , 0)

12: θ
′t+1 = argminθ′ ‖θt+1 − θ′‖2 + 〈µtθ,θt+1 − θ′〉 s.t.Gt+1 � θ′Tθ′

13: At+1 = 1
3ρ (2Dt

1 + Dt
2)

14: Bt+1 = 1
3ρ (Dt

1 + 2Dt
2)

15: Mt+1
A = Mt

A + ρ(At+1 −A
′t+1)

16: Mt+1
B = Mt

B + ρ(Bt+1 −B
′t+1)

17: µt+1
d = µtd + ρ(dt+1 − d

′t+1)

18: µt+1
e = µte + ρ(et+1 − e

′t+1)
19: µt+1

θ = µtθ + ρ(θt+1 − θ′t+1)
20: ηt+1 = ηt + ρ(2θt+1 − dt+1 + et+1)
21: Γt+1 = Γt + ρ(Bt+1 −At+1 −Gt+1)
22: end for

problem:

min
G′

ρ

2
‖G

′
− (Bt −At − θ

′tθ
′tT +

Γt

ρ
)‖2F

s.t. G
′ � 0,

(14)

Thus, G
′∗ = [Bt −At + Γt

ρ − θ
′tθ
′tT ]+, where [A]+ is the projection to the set of PSD matrices, which can be done by

setting the negative eigenvalues of A in its singular value decomposition to zero.

The other non-trivial sub-problem in Algorithm (5) is the minimization with respect to θ
′

(Line 10). By completing the
square, it can be equivalently formulated as:

min
θ′
‖θ
′
− (θt+1 +

µtθ
ρ

)‖22

s.t. Gt+1 � θ′θ′T ,
(15)

Let G = UΛUT be the singular value decomposition of the matrix G where Λ is a diagonal matrix containing the
eigenvalues of the matrix G. Set α = θt+1 +

µtθ
2 . Since UTU = I , we have:

‖UTθ −UTα‖2 = ‖θ −α‖22

Set β = UTθ
′
, then Problem (15) can be reformulated as:

min
β
‖β −UTα‖22

s.t. ββT � Λ.
(16)
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Note that the constraint of the above optimization problem is equivalent to the following:

ββT � Λ⇔
[

1 βT

β Λ

]
� 0⇔ βTΛ−1β ≤ 1⇔

n∑
i=1

β2
i

λi
≤ 1,

where λi = Λii Since the block matrix is symmetric, using Schur Complement, it is positive semi-definite if and only if Λ
is positive semi-definite and 1− βtΛ−1β ≥ 0 (the third inequality above).

Set γ = UTα, then we can write Problem (16) as:

min
β
‖β − γ‖22

s.t.
∑n
i=1

β2
i

λi
≤ 1,

(17)

It can be easily shown that the optimal solution has the form β∗i = γi
1+ µ∗

λi

, where µ∗ is the optimal Lagrangian multiplier

corresponding to the constraint of Problem (17). The bisection algorithm can efficiently obtain the optimal Lagrangian
multiplier. Having β∗, the optimal θ can be computed by solving the linear equation UTθ∗ = β∗.

E. Generating Missing Values Patterns in Numerical Experiments
In this appendix, we define MCAR and MNAR patterns and discuss how to generate them in a given dataset. Formally, the
distribution of missing values in a dataset follows a missing completely at random (MCAR) pattern if the probability of
having a missing value for a given entry is constant, independent of other available and missing entries. On the other hand, a
dataset follows a Missing At Random (MAR) pattern if the missingness of each entry only depends on the available data of
other features. Finally, if the distribution of missing values does not follow an MCAR or MAR pattern, we call it missing
not at random (MNAR).

To generate the MCAR pattern on a given dataset, we fix a constant probability 0 < p < 1 and make each data entry
unavailable with the probability of p. On the other hand, the generation of the MNAR pattern is based on the idea that if the
value of an entry is farther from the mean of its corresponding feature, then the probability of missingness for that entry is
larger.

The generation of the MNAR pattern is based on the idea that if the value of an entry is farther from the mean of its
corresponding feature, then the probability of missingness for that entry is larger. Algorithm 6 describes the procedure of
generating MNAR missing values for a given column of a dataset:

Algorithm 6 Generating MNAR Pattern for a Given Column of a Dataset
1: Input: x1, x2, . . . , xn: The entries of the current column in the dataset, a, b: Hyper-parameters controlling the

percentage of missing values
2: Initialize: Set µ = 1

n

∑n
i=1 xi and σ2 = 1

n

∑n
i=1 x

2
i − µ2.

3: for i = 1, . . . , n do
4: x

′

i = xi−µ
σ

5: pi = F (a|x′i|+ b)
6: Set xi = ∗ with probability of pi
7: end for

Note that F in the above algorithm is the cumulative distribution function of a standard Gaussian random variable. a and b
control the percentage of missing values in the given column. As a and b increase, the probability of having more missing
values is higher. Since the availability of each data entry depends on its value, the generated missing pattern is missing not
at random (MNAR).

F. Proof of Lemmas and Theorems
In this appendix, we prove all lemmas and theorems presented in the article.

First, we prove the following lemma that is useful in several convergence proofs:
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Lemma 7. The Lipschitz constant of the gradient of the function g defined in Problem (7) is equal to L = 2
λ .

Proof. Since, the problem is convex in θ and concave in C and b, we have:

min
θ

max
C,b

θTCθ − 2bTθ + λ‖θ‖2 = −min
C,b

max
θ

−θTCθ + 2bTθ − λ‖θ‖2

The new objective function is convex in C and b and strongly concave with respect to θ. According to Lemma 1
in Barazandeh & Razaviyayn (2020), g

′
= −g = maxθ −θTCθ + 2bTθ − λ‖θ‖2 is Lipschitz continuous with the

Lipschitz constant equal to:

Lg = Lg′ = L11 +
L12

σ
,

where σ is the strong-concavity modulus of−θTCθ+2bTθ−λ‖θ‖2. Assume that h(θ,C,b) , −θTCθ+2bTθ−λ‖θ‖2
and L11, L12 are defined as follows:

‖∇b,Ch(θ,b1,C1)−∇b,Ch(θ,b2,C2)‖ ≤ L11‖(C1,b1)− (C2,b2)‖
‖∇θh(θ,b1,C1)−∇θh(θ,b2,C2)‖ ≤ L12‖(C1,b1)− (C2,b2)‖

It is easy to see that L11 = 0 and L12 = 2 max ‖θ‖2 ≤ 2, which completes the proof.

Proof of Theorem 1: Since the set of feasible solutions for b and C defines a compact set, and function g is a concave
function with respect to b and C, the projected gradient ascent algorithm converges to the global maximizer of g in
T = O(LD

2

ε ) iterations (Bubeck, 2014), where D = ‖C0 − C∗‖2F + ‖b0 − b∗‖22 and L is the Lipschitz constant of
function g, which is equal to 2

λ according to Lemma 7.

Proof of Theorem 2: First, note that if we multiply the objective function by−1, Problem (6) can be equivalently formulated
as:

max
θ

min
C,b
−θTCθ + 2bTθ − λ‖θ‖22

s.t. −C + Cmin ≤ 0,

C−Cmax ≤ 0,

−b + bmin ≤ 0,

b− bmax ≤ 0,

−C � 0

(18)

If we assign A,B,d, e,H to the constraints respectively, then the Lagrangian function can be written as:

L(C,b,A,B,d, e,H) = −θTCθ + 2bTθ + 〈A,−C + Cmin〉
+〈B,C−Cmax〉+ 〈d,−b + bmin〉
+〈e,b− bmax〉 − 〈C,H〉 − λ‖θ‖22,

(19)

The dual problem is defined as:

max
A,B,d,e,H

min
C,b

L(C,b,A,B,d, e,H) (20)

The minimization of L takes the following form:

min
C,b
〈C,−θθT −A + B−H〉+ 〈b, 2θ − d + e〉 − λ‖θ‖22

−〈B,Cmax〉+ 〈A,Cmin〉 − 〈e,bmax〉+ 〈d,bmin〉,
(21)
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To avoid −∞ value for the above minimization problem, it is required to set −θθT −A + B−H and 2θ − d + e to zero.
Thus the dual problem of (18) is formulated as:

max
A,B,d,e,H

bTmind− bTmaxe + 〈Cmin,A〉 − 〈Cmax,B〉 − λ‖θ‖22

s.t. −θθT −A + B−H = 0,

2θ − d + e = 0,

A,B,d, e ≥ 0,

H � 0

(22)

Since the duality gap is zero, Problem (6) can be equivalently formulated as:

max
θ,A,B,d,e,H

bTmind− bTmaxe + 〈Cmin,A〉 − 〈Cmax,B〉 − λ‖θ‖2

s.t. −θθT −A + B−H = 0,

2θ − d + e = 0,

A,B,d, e ≥ 0,

H � 0.

(23)

We can multiply the objective function by −1 and change the maximization to minimization, which gives the dual problem
described in (2).

Proof of Theorem 5 Algorithm 4 applies the projected Nesterov acceleration method on the concave function g. As proved
in Nesterov (1983), the rate of convergence of this method conforms to the lower bound of first-order oracles for the general

convex minimization (concave maximization) problems, which is O(
√

LD2

ε ). We compute the Lipschitz constant L that
appeared in the iteration complexity bound by Lemma 7.

G. Dataset Descriptions
In this section, we introduce the datasets used in Section 5 to evaluate the performance of RIFLE. Except for the NHANES,
all other datasets contain no missing values. For those datasets, we generate MCAR and MNAR missing values artificially
(for MNAR patterns, we apply Algorithm 6 to the datasets).

• NHANES: The percentage of missing values varies for different features of the NHANES dataset. There are two
sources of missing values in NHANES data: Missing entries during data collection and missing entries resulting from
merging different datasets in the NHANES collection. On average, approximately 20% of data is missing.

• Super Conductivity2: Super Conductivity datasets contains 21263 samples describing superconductors and their
relevant features (81 attributes). All features are continuous, and the assigned task is to predict the critical temperature
based on the given 81 features. We have used this dataset in experiments summarized in Figure 3, Figure 4, and Table 2.

• BlogFeedback3: BlogFeedback data is a collection of 280 features extracted from HTML-documents of the blog posts.
The assigned task is to predict the number of comments in the upcoming 24 hours based on the features of more than
60K data training data points. The test dataset is fixed and is originally separated from the training data. The dataset is
used in experiments described in Table 2.

• Breast Cancer(Prognostic)4: The dataset consists of 34 features and 198 instances. Each record represents follow-up
data for one breast cancer case collected in 1984. We have done several experiments to impute the MCAR missing
values generated artificially with different proportions. The results are depicted in Table 1 and Figure 6.

• Parkinson5: The dataset describes a range of biomedical voice recording from 31 people, 23 with Parkinson’s disease
(PD). The assigned task is to discriminate healthy people from those with PD. There are 193 records and 23 features in
the dataset. The dataset is processed similarly to the Breast Cancer dataset and used in the same experiments.

2https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
3https://archive.ics.uci.edu/ml/datasets/BlogFeedback
4https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
5https://archive.ics.uci.edu/ml/datasets/parkinsons

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data
https://archive.ics.uci.edu/ml/datasets/BlogFeedback
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic)
https://archive.ics.uci.edu/ml/datasets/parkinsons
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Figure 9. Consistency of ADMM (Algorithm 5) and Projected Gradient Ascent on function g (Algorithm 1) on the synthetic datasets with
40%, 60% and 80% missing values.

• Spam Base6: The dataset consists of 4601 instances and 57 attributes. The assigned classification task is to predict
whether the email is spam. To evaluate different imputation methods, we randomly mask a proportion of data entries
and impute them with different approaches. The results are depicted in Table 1 and Figure 6.

• Boston Housing7: Boston Housing dataset contains 506 instances and 14 columns. We generate random missing
entries with different proportions and impute them with RIFLE and several state-of-the-art approaches. The results are
demonstrated in Table 1 and Figure 6.

• Cloud8: The dataset has 1024 instances and 10 features extracted from clouds images. We use this dataset in
experiments depicted in Table 1 with 70% artificial MCAR missing values.

• Wave Energy Converters9: We sample a subset of 3000 instances with 49 features from the original Wave Energy
Converter dataset. We have executed several imputation methods on the dataset, and the results are shown in Figure 6.

• Sensorless Drive Diagnosis10: The 49 continuous features in this dataset are extracted from electric current drive
signals, and the associated classification task is to determine the condition of device’s motor. We choose different
random samples with size 400 to run experiments (imputation) in Figure 7.

H. Further Discussion on the Consistency of RIFLE
The three developed algorithms in Section 3 for solving robust ridge regression are all consistent. To show this, we have
generated a synthetic dataset with 50 input features following a jointly normal distribution. As observed in Figure 9, by
increasing the number of samples, the NRMSE of all three algorithms converges to 0.01, which is the standard deviation
of the zero-mean Gaussian noise added to each target value (the dashed line). The pattern can be observed for different
percentages of missing values.

6https://archive.ics.uci.edu/ml/datasets/spambase
7https://www.kaggle.com/c/boston-housing
8https://archive.ics.uci.edu/ml/datasets/Cloud
9https://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters

10https://archive.ics.uci.edu/ml/datasets/dataset+for+sensorless+drive+diagnosis

https://archive.ics.uci.edu/ml/datasets/spambase
https://www.kaggle.com/c/boston-housing
https://archive.ics.uci.edu/ml/datasets/Cloud
https://archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters
https://archive.ics.uci.edu/ml/datasets/dataset+for+sensorless+drive+diagnosis
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I. Imputation Table

Dataset Name RIFLE QRIFLE MICE Amelia GAIN MissForest MIDA EM
Spam (30%) 0.87 ±0.009 0.82 ±0.009 1.23 ±0.012 1.26 ±0.007 0.91 ±0.005 0.90 ±0.013 0.97 ±0.008 0.94± 0.004
Spam (50%) 0.90 ±0.013 0.86 ±0.014 1.29 ±0.018 1.33 ±0.024 0.93 ±0.015 0.92 ±0.011 0.99 ±0.011 0.97± 0.008
Spam (70%) 0.92 ±0.017 0.91 ±0.019 1.32 ±0.028 1.37 ±0.032 0.97 ±0.014 0.95 ±0.016 0.99 ±0.018 0.98± 0.017

Housing (30%) 0.86 ±0.015 0.89 ±0.018 1.03 ±0.024 1.02 ±0.016 0.82 ±0.015 0.84 ±0.018 0.93 ±0.025 0.95± 0.011
Housing (50%) 0.88 ±0.021 0.90 ±0.024 1.14 ±0.029 1.09 ±0.027 0.88 ±0.019 0.88 ±0.018 0.98 ±0.029 0.96± 0.016
Housing (70%) 0.92 ±0.026 0.95 ±0.028 1.22 ±0.036 1.18 ±0.038 0.95 ±0.027 0.93 ±0.024 1.02 ±0.037 0.98± 0.017
Clouds (30%) 0.81 ±0.018 0.79 ±0.019 0.98 ±0.024 1.04 ±0.027 0.76 ±0.021 0.71 ±0.011 0.83 ±0.022 0.86± 0.013
Clouds (50%) 0.84 ±0.026 0.84 ±0.028 1.10 ±0.041 1.13 ±0.046 0.82 ±0.027 0.75 ±0.023 0.88 ±0.033 0.89± 0.018
Clouds (70%) 0.87 ±0.029 0.90 ±0.033 1.16 ±0.044 1.19 ±0.048 0.89 ±0.035 0.81 ±0.031 0.93 ±0.044 0.92± 0.023

Breast Cancer (30%) 0.52 ±0.023 0.54 ±0.027 0.74 ±0.031 0.81 ±0.032 0.58 ±0.024 0.55 ±0.016 0.70 ±0.026 0.67± 0.014
Breast Cancer (50%) 0.56 ±0.026 0.59 ±0.027 0.79 ±0.029 0.85 ±0.033 0.64 ±0.025 0.59 ±0.022 0.76 ±0.035 0.69± 0.022
Breast Cancer (70%) 0.59 ±0.031 0.65 ±0.034 0.86 ±0.042 0.92 ±0.044 0.70 ±0.037 0.63 ±0.028 0.82 ±0.035 0.67± 0.014

Parkinson (30%) 0.57 ±0.016 0.55 ±0.016 0.71 ±0.019 0.67 ±0.021 0.53 ±0.015 0.54 ±0.010 0.62 ±0.017 0.64± 0.011
Parkinson (50%) 0.62 ±0.022 0.64 ±0.025 0.77 ±0.029 0.74 ±0.034 0.61 ±0.022 0.65 ±0.014 0.71 ±0.027 0.69± 0.022
Parkinson (70%) 0.67 ±0.027 0.74 ±0.033 0.85 ±0.038 0.82 ±0.037 0.69 ±0.031 0.73 ±0.022 0.78 ±0.038 0.75± 0.029

Table 1. Performance comparison of RIFLE, QRIFLE (Quadratic RIFLE), and state-of-the-art methods on several UCI datasets. We
applied to impute methods on three different missing-value proportions for each dataset. The best imputer is highlighted with bold font,
and the second-best imputer is underlined. Each experiment is done 5 times, and the average and the standard deviation of performances
are reported.

Methods Datasets
Super Conductivity Blog Feedback NHANES

Regression on Complete Data 0.4601 0.7432 0.6287
RIFLE 0.4873± 0.0036 0.8326± 0.0085 0.6304± 0.0027

Mean Imputer + Regression 0.6114± 0.0006 0.9235± 0.0003 0.6329± 0.0008
MICE + Regression 0.5078± 0.0124 0.8507± 0.0325 0.6612± 0.0282

EM + Regression 0.5172± 0.0162 0.8631± 0.0117 0.6392± 0.0122
MIDA Imputer + Regression 0.5213± 0.0274 0.8394± 0.0342 0.6542± 0.0164

MissForest 0.4925± 0.0073 0.8191± 0.0083 0.6365± 0.0094
KNN Imputer 0.5438± 0.0193 0.8828± 0.0124 0.6427± 0.0135

Table 2. Normalized RMSE of RIFLE and several state-of-the-art Methods on Superconductivity, blog feedback, and NHANES datasets.
The first two datasets contain 30% Missing Not At Random (MNAR) missing values in the training phase generated by Algorithm 6.
Each method applied 5 times to each dataset, and the result is reported as the average performance ± standard deviation of experiments in
terms of NRMSE.

Since MICE and MIDA cannot predict values during the test phase without data imputation, we use them in a pre-processing
stage to impute the data. Then we apply the linear regression to the imputed dataset. On the other hand, RIFLE, KNN
imputer, and MissForest can predict the target variable without imputing the training dataset. Table 2 shows that RIFLE
outperforms all other state-of-the-art approaches executed on the three mentioned datasets. In particular, RIFLE outperforms
MissForest, while the underlying model used by RIFLE is simpler (linear) compared to the nonlinear random forest model
utilized by Missforest.


