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Abstract
Offline reinforcement learning (RL) is widely
used to find an optimal policy using a pre-
collected dataset, without further interaction with
the environment. Recent RL theory has made sig-
nificant progress in developing sample-efficient
offline RL algorithms with various relaxed as-
sumptions on data coverage, with specific fo-
cuses on either infinite-horizon discounted or
finite-horizon episodic Markov decision processes
(MDPs). In this work, we revisit the LP frame-
work and the induced duality principle for of-
fline RL, specifically for infinite-horizon average-
reward MDPs. By virtue of this LP formula-
tion and the duality principle, our result achieves
the Õ(1/

√
n) near-optimal rate under partial data

coverage assumptions. Our key enabler is to relax
the equality constraint and introduce proper new
inequality constraints in the dual formulation of
the LP. We hope our insights can shed new lights
on the use of LP formulations and the induced
duality principle, in offline RL.

1. Introduction
Reinforcement Learning (RL) has achieved remarkable em-
pirical success in solving sequential decision-making prob-
lems in recent years (Mnih et al., 2015; Silver et al., 2016;
Vinyals et al., 2017; Levine et al., 2016). Two key factors
have contributed to these successes: 1) the use of powerful
function approximators, such as deep neural networks, and
2) access to large amounts of interaction data with the envi-
ronment. Many successful RL applications rely on online
data collection through simulators, such as game engines
(Silver et al., 2016; Vinyals et al., 2017) and physics simula-
tors (Todorov et al., 2012).

*Equal contribution 1Department of EECS, Massachusetts
Institute of Technology 2Department of ECE, University of
Maryland, College Park. Correspondence to: Jiawei Zhang
<jwzhang@mit.edu>.

ICML 2023 Workshop on Duality for Modern Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

However, in numerous real-world domains, online interac-
tion is impractical due to the high cost or impracticality of
data collection, or the inability to simulate the environment
accurately. Examples of such domains include robotics and
autonomous driving (Levine et al., 2018; Maddern et al.,
2017), healthcare (Tseng et al., 2017), and recommender
systems (Swaminathan et al., 2017). Moreover, even in
cases where online interaction is available, leveraging previ-
ously collected data is crucial for effective generalization,
as it requires large datasets (Levine et al., 2020). Offline RL
has emerged as a promising framework for deploying RL in
real-world scenarios.

Most existing works on offline RL focus on learning in
discounted reward Markov Decision Processes (MDPs) with
a discount factor γ < 1. However, in many applications,
learning problems are modeled as average-reward MDPs
(Sutton & Barto, 2018)[Chapter 10], (Naik et al., 2019;
Farias et al., 2022). Despite the rich literature on offline RL
for discounted MDPs, to the best of our knowledge, there
is no existing result studying offline RL for average-reward
MDPs that achieve optimal sample complexity. In this paper,
we address offline RL in average-reward MDPs and design
algorithms with a statistical convergence rate of Õ(1/

√
n).

Offline RL in discounted MDPs. Offline RL is known to
suffer from the training instability issue caused by the dis-
tribution shift between the offline data distribution and the
target (optimal) policy distribution (Fujimoto et al., 2019;
Kumar et al., 2020). Consequently, earlier offline RL works
relied on strong assumptions regarding the dataset to provide
sample-efficiency guarantees. Many of these results (Munos
& Szepesvári, 2008; Scherrer, 2014; Chen & Jiang, 2019;
Zhang et al., 2021) required the dataset to have full coverage,
meaning that the data covers the state distributions induced
by all policies. These assumptions are strong and can be
violated when using richer function classes, and they are
more stringent than the common assumption of realizability
in statistical learning theory. Moreover, the full coverage
assumption requires the offline data to cover all possible
state-action pairs, which is often violated in real-world ap-
plications. Recent advancements have made progress in
relaxing these assumptions. For example, (Liu et al., 2020;
Jin et al., 2020; Rashidinejad et al., 2021; Xie et al., 2021;
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Uehara & Sun, 2021; Chen & Jiang, 2022) have shown
that by employing a pessimistic mechanism that selects the
worst-case value function or model from an uncertainty
set during learning, the full coverage assumption can be re-
laxed to a single-policy coverage assumption. More recently,
(Zhan et al., 2022; Rashidinejad et al., 2022; Ozdaglar et al.,
2023) propose linear programming-based methods that relax
the data coverage assumptions and provide computationally
tractable algorithms when using function approximation.

RL in average-reward MDPs using LP. To the best of
our knowledge, there is no finite-sample complexity results
for average-reward offline RL, with partial data coverage.
The most related results which also exploited the LP frame-
work and duality principle in average-reward RL, are those
for the case with a generative model (Wang, 2020; Jin &
Sidford, 2020).

1.1. Our Goal and Challenges

For discounted MDPs, several algorithms achieve a nearly
optimal convergence rate of Õ(1/

√
n). However, it re-

mains unknown whether we can achieve this rate for
average-reward MDPs. The convergence rate for discounted
MDPs with a discount factor γ is always in the form of
O(1/

√
poly(1− γ)n), which can become large as γ → 1.

Consequently, the results and analysis for discounted MDPs
cannot be directly applied to average-reward MDPs.

Contributions. In this paper, we propose a linear
programming-based algorithm for solving offline RL in
average-reward MDPs. Our algorithm achieves a conver-
gence rate of Õ(tmax/

√
n) under the single-policy coverage

assumption. Here, n represents the number of samples, and
tmax denotes the worst-case mixing time of the MDP.

Our techniques. The main idea behind our approach is to
study properly constrained versions of the linear program-
ming (LP) reformulation of the underlying MDP. Specifi-
cally, we focus on a variant of the standard LP reformula-
tion based on the marginal importance sampling framework
(Nachum et al., 2019; Lee et al., 2021), where the dual
variable corresponds to the density ratio, which is the ratio
between the state-action occupancy measure and the offline
data distribution. A distinctive feature of our algorithm is
the relaxation of equality constraints in the empirical LP
and the boundedness constraints on the density ratio. The
convergence result relies on a crucial error bound lemma
that relates the suboptimality of the value function to the
`1-norm violation of the validity constraint on the stationary
distribution in the LP (see Lemma 5). Additionally, con-
centration bounds on the constraints and objective functions
play a crucial role in our analysis.

2. Background
2.1. Model and Setup

Markov decision processes. Consider an infinite-horizon
MDP characterized by a tuple 〈S,A, P,R, µ0〉, where S =
{s1, · · · , s|S|} and A = {a1, · · · , a|A|} denote the state
and action spaces of the agent, R : S × A → [0, 1] is the
reward function1, P : S×A→ ∆(S) denotes the transition
kernel, and µ0 ∈ ∆(S) denotes the initial state distribution.
Let π : S → ∆(A) denote a Markov stationary policy of the
agent, determining the distribution over actions at each state.
We denote Pπ ∈ R|S|×|S| to be the transition matrix corre-
sponding to policy π. Each π leads to stationary distribu-
tions over the state spaces and state-action spaces, denoted
by βπ and θπ , where βπ ∈ R|S| denote the stationary distri-
bution of transition matrix Pπ and θπ(s, a) = βπ(s)π(a|s).
We assume that the MDP is ergodic and irreducible for
any π. Define Jµ0

(π) = Es0∼µ0
limT→∞

1
T Eπr(st, at),

where (st, at) follows the policy π.

Note that Jµ0
is independent of µ0 due to ergodicity. We let

J(π) = Jµ0
(π), which can also be represented as

J(π) = r>θπ , where

r = [r(s1, a1), · · · , r(s|S|, a|A|)]> ∈ [0, 1]|S||A|.

The goal of reinforcement learning is to learn a π∗ that
maximizes J(π). We sometimes denote m = |S||A|.

Offline RL. Consider an offline RL problem, where one
has collected a dataset D containing n samples drawn from
some distribution. SupposeD = {(si, ai, s′i, ri)}ni=1, where
the independent and identically distributed (i.i.d.) samples
(si, ai) are drawn from some distribution µ(·, ·). We let
µ(s) =

∑
a µ(s, a) which implies that si are drawn i.i.d.

from the distribution µ(·). We denote the conditional dis-
tribution of a given s induced from µ as πµ(a | s), i.e.,
πµ(a | s) = µ(s, a)/µ(s) if µ(s) > 0; and πµ(· | s) can be
defined as any distribution in ∆(A), e.g., a uniform one with
πµ(a | s) = 1/|A|, if µ(s) = 0. πµ can also be defined
as the behavior policy if µ happens to correspond to the
stationary distribution of some policy.

In this paper, we assume that the behavior policy πµ(a | s)
is known, as in (Zhan et al., 2022; Rashidinejad et al., 2022).

Given a state-action pair (si, ai), we have ri = r(si, ai)
and s′i ∼ Psi,ai(·). Moreover, let nD(s, a) be the subset of
the sample indices {1, · · · , n} that includes the indices of
the samples in D that visit state-action pair in the sense of
(si, ai) = (s, a). Similarly, we use nD(s, a, s′) and nD(s)
to denote the sets of indices of data samples in D such

1Note that we stick to the case of deterministic reward for ease
of presentation. Our results can be readily extended to the case of
random rewards.
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that (si, ai, s
′
i) = (s, a, s′) and si = s, respectively. We

define the empirical version of µ, i.e., µD, as µD(s, a) =
nD(s, a)/n. The goal of offline RL is to make use of the
dataset D to learn a policy π̂, such that the optimality gap
Jµ0

(π∗)− Jµ0
(π̂) is small.

Partial data coverage. Throughout the paper, we consider
the scenario where the offline data only has partial coverage,
instead of a full one. To illustrate the difference, we first
introduce the following definition of policy concentrability.

Definition 1 (Policy Concentrability). For any policy π ,
and the given offline data distribution µ, we define Cπ > 0
to be the policy concentrability coefficient, which is the
smallest upper-bound such that θπ(s,a)

µ(s,a) ≤ Cπ for all
(s, a) ∈ S ×A.

Note thatCπ characterizes how well the trajectory generated
by the policy π is covered by the offline data. Throughout,
we make the following assumption:

Assumption 1. Cπ∗ ≤ C∗ <∞ for some constant C∗.

Our goal: finding an O(1/
√
n) nearly optimal policy

For discounted MDP, a number of algorithms have been pro-
posed to achieve a nearly optimal accuracy, say, O(1/

√
n

for offline RL for a fixed discounted factor γ. A natural
question arises: can we find a nearly optimal policy for
AMDP by offline RL approach with O(1/

√
n) accuracy?

The naive approach: Using discounted MDP to approxi-
mate. As stated before, there is a rich literature about of-
fline RL algorithms in discounted MDP with 1√

poly((1−γ)n)
accuracy, where γ is the discounted factor and poly(·)
means polynomial order. Moreover, by (Jin & Sidford,
2021; Wang et al., 2022), we know that there is a (1 − γ)
gap between the optimal policy in discounted MDP and
that in average-reward MDP. Therefore, we should take
1 − γ ≤ O(1/

√
n) if we require an O(1/

√
n) accuracy

for average-reward MDP. However, this results in at least
1/n1/4 sub-optimality gap for the discounted MDP. There-
fore, this naive approach does not help us find a nearly
optimal policy with 1/

√
n accuracy.

2.2. LP-based Reformulations

Let P(s,a) = [Ps,a(s1), · · · , Ps,a(s|S|)]> ∈ ∆(S)
be the vector of state transition probabilities
for the state-action pair (s, a). Let P =
[P(s1,a1), · · · , P(s1,a|A|), · · · , P(s|S|,a1), · · · , P(s|S|,a|A|)] ∈
R|S|×m and 1|A| = [1, 1, · · · , 1]> ∈ R|A|. Then define
the matrix M as: M := Diag(1>|A|, · · · ,1

>
|A|) − P. The

optimality condition, i.e., the Bellman equation, of the
average-reward MDP can be equivalently written as the

following linear program (Puterman, 1994):

minv,h v

s.t. v · 1 + (I − Pa)h− ra ≥ 0, ∀a ∈ A,
(1)

where Pa ∈ R|S|×|S| denotes the matrix whose (s, s′)-
component is Ps,a(s′), and ra ∈ R|S| such that ra(s) =
r(s, a). This can be derived by the definition of Bellman
equation in the average-reward case.

It is well-known that the LP (1) admits the following dual
program, which also gives the optimal solution of the prob-
lem (Puterman, 1994):

maxθ r>θ :=
∑
s∈S,a∈A r(s, a) · θ(s, a)

s.t. Mθ = 0,
∑
s,a θ(s, a) = 1,

(2)

Note that the optimal solution of the dual problem corre-
sponds to the stationary distribution corresponding to an
optimal policy (see (Puterman, 1994)). Hence, we use the
notation θ to denote the optimization variable of the dual
problem.

The optimal θ∗ can be used to generate a policy πθ∗ , where
πθ is defined as

πθ(a | s) =
θ(s, a)∑

a′∈A θ(s, a
′)
, (3)

if
∑
a′∈A θ(s, a

′) > 0; and πθ(· | s) can be defined as any
distribution in ∆(A), e.g., a uniform one with πθ(a | s) =
1/|A|, if

∑
a′∈A θ(s, a

′) = 0. This πθ∗ then corresponds to
an optimal policy π∗ of the MDP (Puterman, 1994).

To better study the relationship between the stationary distri-
bution and the data distribution, we also consider the scaled
version of the LP. This is also referred to as the marginal im-
portance sampling formulation of the MDP in the literature
(Nachum et al., 2019; Lee et al., 2021; Zhan et al., 2022).
First, we definew ∈ Rm+ such thatw(s, a)µ(s, a) = θ(s, a),
i.e., w(s, a) denotes the ratio between the stationary distri-
bution of the target policy and the offline data distribution.

For each (s, a, s′) ∈ S × A × S, let Ks′,(s,a) ∈
R|S|×m be a matrix satisfying Ks′,(s,a)(s, (s, a)) = 1,
Ks′,(s,a)(s

′, (s, a)) = −1 and all other entries are zeros.
Define the distributions ν and νD over S × A × S as fol-
lows: ν(s, a, s′) := Ps,a(s′)µ(s, a) and νD(s, a, s′) :=
|nD(s, a, s′)|/n. Finally, we also define the matrices

K = E(s,a,s′)∼νKs′,(s,a), KD = E(s,a,s′)∼νDKs′,(s,a). (4)

Furthermore, we define u ∈ Rm such that u(s, a) :=
r(s, a)µ(s, a). Then, we have the following lemma which
relates these quantities to the ones in Problem (2).

Lemma 1. We have u>w = r>θ and Kw = Mθ.
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Proof. Note that the first inequality directly follows from
the definitions of u and w.

The second equality can be derived as follows. Let
K(s′, (s, a)) and M(s′, (s, a)) denote the (s′, (s, a))-th el-
ement of the matrices K and M , respectively. Note that
K(s′, (s, a)) = M(s′, (s, a)) · µ(s, a) for all (s, a, s′) ∈
S ×A× S. Now:

[Kw]s =
∑
(s̃,ã)

K(s, (s̃, ã))w(s̃, ã)

=
∑
(s̃,ã)

M(s, (s̃, ã))µ(s̃, ã)w(s̃, ã) = [Mθ]s

thereby completing the proof.

Using Lemma 1, we can rewrite Problem (2) as follows:

max
w≥0

u>w s.t. Kw = 0,
∑
s,a

w(s, a)µ(s, a) = 1. (5)

Let w∗ be the solution to (5), then we can obtain the optimal
policy by computing πw∗ , where with a slight abuse of
notation, πw is defined as

πw(a | s) :=

{
w(s,a)πµ(a|s)∑

a′∈A w(s,a′)πµ(a′|s) , if c > 0
1
|A| if c = 0

(6)

where c :=
∑
a′∈A w(s, a′)πµ(a′ | s). We recall that πµ is

the conditional distribution of a given s under µ, which can
also be viewed as the behavior policy.

2.3. The empirical version

However, we only get access to the empirical estimates of
K and u. Consider the empirical version of (5)

max
w≥0

uTDw

s.t. KDw = 0∑
s,a

w(s, a)µD(s, a) = 1, (7)

where we recall the definition of KD in (4), and define
uD ∈ Rm as uD(s, a) = r(s, a)µD(s, a), with µD(s, a) =
nD(s, a)/n.

To ensure that the empirical and the population version
of LP are closed to each other, we need to make use of
concentration inequalities for (K − KD)w, (u − uD)Tw,
which require certain boundedness of w.

Let Bw ≥ C∗ be some upper bound of C∗. Combin-
ing Assumption 1, we insert the infinity norm constraint
‖w‖∞ ≤ Bw to (7) and the resulting empirical formulation

becomes:

max
w∈W :=[0,Bw]|S||A|

uTDw

s.t. KDw = 0∑
s,a

w(s, a)µD(s, a) = 1. (8)

However, (8) may not have a feasible solution due to the ad-
ditional constraint w ∈W = [0, Bw]|S||A|. To address this
issue, in the next section we relax the equality constraints to
guarantee the feasibility of the problem.

3. Average-Reward MDP Case
To make sure the feasibility of the empirical LP, we relax the
equality constraints in (8) and solve the following empirical
problem:

min
w∈W

(−uTDw)

s.t. ‖KDw‖1 ≤ En,δ,∀x ∈ B.

|
∑
s,a

w(s, a)µD(s, a)− 1| ≤ En,δ, (9)

where En,δ := 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n. Let wD

be the solution to the above problem. We can obtain the
policy πD by setting πD = πθ̃D , where for each (s, a) ∈
S ×A

θ̃D(s, a) = wD(s, a)πµ(a | s). (10)

Definition 2. For a policy π, we let βπ be the stationary
distribution of the transition matrix Pπ. For some θ, we let
βθ ∈ R|S| satisfy βθ(s) =

∑
a θ(s, a).

We make the following assumption on the worst case mixing
time of the transition matrix.

Assumption 2. There exists some T0 > 0 such that
‖PT0

π β − βπ‖1 ≤ 1/2 for any π and any state distribu-
tion β ∈ ∆(S).

By the above assumption, we have the following immediate
result:

Lemma 2. Let k0 ≥ t0 log2(1/En,δ). Then ‖P k0π β −
βπ‖1 ≤ En,δ for any π and any state distribution β ∈
∆(S).

Proof. For a vector ζ, define ζ+ = max(ζ, 0) and ζ− =
max(−ζ, 0). Then we have ζ+ − ζ− = ζ and ‖ζ‖1 =
‖ζ+‖1 + ‖ζ−‖1. It suffices to prove that for j > 0,
‖P jt0π β − P kt0π β′‖1 ≤ (1/2)j−1. We prove itby induc-
tion. For j = 1, the result holds by Assumption 2 and
triangular inequality. Suppose that the result holds for
j. Let ζ = P jt0π β − P jt0π β′. Then ‖ζ‖ ≤ ‖P jt0π (β −
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βπ)‖1 + ‖P jt0π (β′ − βπ)‖1 ≤ (1/2)j−1. Since P jt0π β and
P jt0π β′ are probability distributions, 1T ζ = 0. Therefore,
‖ζ+‖1 = 1T ζ+ = 1T ζ− = ‖ζ−‖1. Hence, ‖ζ−‖1 =
‖ζ+‖1 ≤ (1/2)j since ‖ζ‖1 = ‖ζ+‖1 + ‖ζ−‖1. Let β+

be a probability distribution such that β+ = λζ+ for some
λ ≥ 2j−1. Also let β− = λβ− is also a probability distri-
bution. Then

‖P (j+1)t0
π (β − β′)‖1 = ‖P t0π ζ‖1 (11)

=
1

λ
‖P t0π β+ − P t0π β−‖1(12)

≤ (1/2)j−1 · (1/2) (13)
= (1/2)j , (14)

completing the proof.

Theorem 1. We have

J(π∗)− J(πD) ≤ Õ(k0
√
|S|/
√
n)

with probability at least 1− 3δ.

3.1. Proof

Let B = [−1, 1]|S| be the L∞-norm ball centered at 0.

First, we have the following concentration bounds similar
to the ones in the proof of Theorem 2 in (Ozdaglar et al.,
2023).

Lemma 3. We have

1. For any w ∈W, x ∈ B, with probability ≥ 1− δ

|x>(K−KD)w| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n

2. For any w ∈W with probability ≥ 1− δ.

|(u− uD)>w| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n

3. For any w ∈W with probability ≥ 1− δ.

|(µ− µD)>w| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n

According to this lemma, we conclude that some optimal
w∗ is feasible to problem (9) with high probability.

Lemma 4. There exists some optimal w∗ = θπ∗/µ(s, a)
for some optimal policy π∗ such that the following three
conditions hold with probability ≥ 1− 2δ:

1. w∗ ∈W ;

2. ‖KDw∗‖1 ≤ En,δ;

3. |
∑
s,a w

∗(s, a)µ(s, a)− 1| ≤ En,δ .

Proof. First, by Assumption 1 and the definition of w, there
exists some w∗ ∈ W . We fix the w∗ and notice that
Kw∗ = 0,

∑
s,a w

∗(s, a)µ(s, a) = 1. Then ‖KDw∗‖1 =
‖(KD − K)w∗‖1 ≤ En,δ with probability ≥ 1 − δ
and |

∑
s,a w

∗(s, a)µD(s, a)− 1| = |
∑
s,a w

∗(s, a)(µD −
µ(s, a))| ≤ En,δ with probability ≥ 1− δ. Therefore, the
result follows from union bound.

By this lemma, we have

uTDwD ≥ uTDw∗

with probability ≥ 1 − 2δ. According to Lemma 3, we
further have

uTwD ≥ uTw∗ − En,δ = J(π∗)− En,δ. (15)

We next relate uTwD to J(πD). Let θ ∈ R|S||A| satisfying
θ(s, a) = w(s, a)µ(s, a). We have the following lemma
relating rT θ = uTw to J(πθ) = J(πw).

Lemma 5. 1. If θ ∈ ∆(S ×A), and (P − E)θ = 0, we
have

rT θ = J(πθ).

2. We have

‖βθ − βπθ‖1
≤ k0‖(I − Pπθ )βθ‖1

+ 3k0|
∑
s,a

w(s, a)µ(s, a)− 1|+ En,δ

= k0‖Kw‖1 + 3k0|
∑
s,a

w(s, a)µ(s, a)− 1|+ En,δ.

(16)

Proof of Lemma 5. We only prove the second part and the
first part is just a special case. First, it is easy to see that
there exists some β̄θ such that

1.
∑
s β̄θ(s) = 1 and β̄θ(s) ≥ 0;

2. ‖βθ − β̄θ‖1 ≤ |
∑
s,a w(s, a)µ(s, a)− 1|.

Notice that by Assumption 2,

‖βπθ − β̄θ‖1 − En,δ ≤ ‖β̄θ − P k0πθ β̄θ‖1
≤ k0‖(I − Pπθ )β̄θ‖1
≤ k0‖(I − Pπθ )βθ‖1 + 2k0‖β̄θ − βθ‖1,

which, combined with triangle inequality, gives the final
bound.

Finally, we can prove our main result, Theorem 1.
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Proof of Theorem 1. Let w = wD and θ(s, a) =
w(s, a)µ(s, a). Also let rπD ∈ R|S| defined as rπD (s) =
r(s, ·)TπD(s, ·).

Then by Lemma 5, we have

|J(πD)− uTwD|
= |rTπD (βπθ − βθ)|
≤ ‖βθ − βπθ‖1
≤ k0‖KwD‖1 + 3|

∑
s,a

wD(s, a)µ(s, a)− 1|+ En,δ,

where the first inequality is because of the boundedness of
r, and the second inequality is because of Lemma 5. By
Lemma 3 as well as the constraints in (9), we further have

|J(πD)− uTwD| ≤ 5k0En,δ.

Finally combined with (15), we have the desired result.
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