
Learning with Primal-Dual Spectral Risk Measures:
a Fast Incremental Algorithm

Ronak Mehta 1 Vincent Roulet 2 Krishna Pillutla 2 Zaid Harchaoui 1

Abstract
We consider learning with a generalization of
rank-weighted objectives known as spectral risk
measures (SRMs). SRMs, like other distribution-
ally robust learning objectives, explicitly capture
the worst-case performance over a set of possi-
ble deviations from the observed training distri-
bution by introducing dual variables maximizing
an adversarial objective. Even when the underly-
ing (regularized) losses are smooth and strongly
convex, direct stochastic gradient methods fail
to converge to the SRM minimizer due in part
to bias. In this work, we introduce a fast in-
cremental optimization algorithm for SRMs that
maintains a running estimate of the optimal dual
variables by efficiently solving an approximation
of the dual problem. Unlike related methods,
our approach converges linearly for any smooth
SRM and requires tuning a single hyperparam-
eter: the (constant) primal learning rate. Em-
pirically, our optimizer can achieve convergence
within 2-3x fewer passes through the training set
than recent baselines on distribution shift and
fairness benchmarks.

1. Introduction
Consider a loss function ℓ(w, z) incurred by a model with
parameters w ∈ Rd on data instance z ∈ Z (e.g. a
feature-label pair). Given a collection of training examples
z = (z1, . . . , zn), the empirical risk minimization (ERM)
problem aims to solve

min
w∈Rd

EZ∼Pz [ℓ(w,Z)] ,

where Pz is the empirical distribution of z. Because a de-
ployed model often observes data from a distribution other

1Department of Statistics, University of Washington
2Google Research. Correspondence to: Ronak Mehta <ron-
akdm@uw.edu>.

ICML 2023 Workshop on Duality for Modern Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

than that on which it was trained, we examine the risk-
sensitive learning problem

min
w∈Rd

max
Q∈U(Pz)

{EZ∼Q [ℓ(w,Z)]− νD(Q∥Pz)} , (1)

in which U(Pz) is an uncertainty/ambiguity set, ν ≥ 0
is a hyperparameter, and D(Q∥Pz) measures the devia-
tion of Pz from Q. The objective (1) emulates a game
in which for any model setting w, nature pays a price of
ν per unit D(Q∥Pz) to replace the true data-generating
distribution with an unfavorably chosen Q. Accordingly,
we refer to ν as the shift cost, the inner maximization
as the dual problem, and the outer minimization as the
primal problem. Canonical choices of D include the χ2

divergence and Kullback Leibler (KL) divergence (Levy
et al., 2020; Mehta et al., 2023) while the uncertainty
set U(Pz) is often divergence-based (Dommel & Pichler,
2021; Levy et al., 2020; Ben-Tal et al., 2013), transport-
based (Blanchet et al., 2019; Esfahani & Kuhn, 2018; Kuhn
et al., 2019; Bui et al., 2022), or entropy-based (Pichler &
Schlotter, 2020; Ahmadi-Javid, 2012).

In this work, we develop algorithms to optimize spec-
tral risk measures (SRMs), a broad collection of instantia-
tions of (1) which includes the superquantile (a.k.a. con-
ditional value-at-risk), extremile, and exponential spec-
tral risk measure (ESRM) classes of objectives (Laguel
et al., 2021; Acerbi & Tasche, 2002; Cotter & Dowd, 2006;
Daouia et al., 2019). These (and other) distributionally ro-
bust objectives have recently enjoyed a surge in popularity
in diverse contexts such as reinforcement learning and con-
trol (Liu et al., 2022a; Kallus et al., 2022; Liu et al., 2022b;
Xu et al., 2023; Wang et al., 2023; Lotidis et al., 2023),
continual learning (Wang et al., 2022), federated learning
(Pillutla et al., 2023), dimension reduction (Vu et al., 2022),
bandit problems (Yang et al., 2023), Bayesian learning (Tay
et al., 2022; Inatsu et al., 2022), and structured prediction
(Li et al., 2022). Despite this popularity, the options for
stochastic/incremental algorithms (those that require only
O(1) number of calls to a function value/gradient oracle
per-iterate) are limited for robust objectives. The key chal-
lenge is that the weight that the adversary assigns to data
point zi is given by solving the dual problem exactly when
fixing the losses ℓ(w, z1), . . . , ℓ(w, zn) at a particular value

of the primal variables (as we discuss in Sec. 2). Comput-
ing these losses requires all n oracle calls, leading mini-
batch estimators to be biased (Mehta et al., 2023; Levy
et al., 2020; Rényi, 1953). As such, full-batch approaches
endure the computational cost and invoke O(n) oracle calls
per-iterate whereas stochastic gradient descent (SGD)-like
approaches endure the bias, which along with their inherent
variance leads to in poor convergence in practice (Mehta
et al., 2023; Levy et al., 2020; Kawaguchi & Lu, 2020).

LSVRG (Mehta et al., 2023) is a recently proposed incre-
mental algorithm that converges linearly for SRMs, given
that the shift cost ν is large enough. This method peri-
odically computes full batch gradients by computing the
losses {ℓ(w, zi)}ni=1 and optimal dual variables at epoch
checkpoints every N iterations. The dual variables are held
fixed for the entirety of the epoch, so setting N = O(n)
amortizes the cost of n oracle calls in theory. In prac-
tice, the method requires tuning both a learning rate and
an epoch length so the exact number of calls to an ora-
cle per-iterate is n/N , a computational subtlety shared by
its namesake SVRG in ERM (Johnson & Zhang, 2013).
More pertinent to robust learning, however, is the fact that
N also governs the bias accrued by using an approximate
dual solution within each epoch, causing hyperparameter
selection for LSVRG to more be precarious than for vanilla
SVRG in ERM. Thus, the opportunity remains for a versa-
tile stochastic optimizer for spectral risk-based objectives.

Contributions. In this paper, we propose SpecSAGA, an
incremental algorithm for optimizing SRMs designed in
the spirit of SAGA for ERM (Defazio et al., 2014). Our
approach, unlike LSVRG, converges linearly for any shift
cost on regularized convex losses. It only has one tunable
hyperparameter (a learning rate), and makes O(1) oracle
calls regardless of hyperparameter choices. Experimen-
tally, our method demonstrates equal or faster convergence
than competitors on the training objective on nearly all ob-
jectives and datasets considered, and exhibits higher stabil-
ity with respect to external metrics in fairness and distri-
bution shifts. In Sec. 2, we describe our problem and the
challenges it poses. In Sec. 3, we propose SpecSAGA and
establish its convergence. In Sec. 4 we present extensions
of SpecSAGA to tackle generic f -divergences. In Sec. 5,
we demonstrate its performance on tabular, vision, and lan-
guage benchmarks in various supervised learning settings.

Related Work. In the standard ERM setting for
convex losses, incremental variance-reduced algorithms
have demonstrated faster convergence than both full-
batch and direct stochastic gradient methods in theory
and practice (Gower et al., 2020). They have been
studied in neural network learning as well (Defazio &
Bottou, 2019). When the underlying losses are L-
smooth and µ-strongly convex, variance-reduced meth-

ods such as SVRG (Johnson & Zhang, 2013) and SAGA
(Defazio et al., 2014) reach an ε-suboptimal point in
O ((n+ L/µ) log(1/ε)) steps (whereas full batch gradi-
ent descent requires O ((nL/µ) log(1/ε)) iterations), de-
coupling the sample size n and the condition number L/µ.
As the gradient estimates are often unbiased in ERM, this
speed is principally due to variance reduction by the ad-
dition of control variates (Graham & Talay, 2013) to the
update direction.

Distributionally robust objectives (Rahimian & Mehrotra,
2022; Michel et al., 2021; 2022; Haddadpour et al., 2022;
Piratla et al., 2022) and spectral risk measures (SRMs) in
particular (Fan et al., 2017; Kawaguchi & Lu, 2020; Khim
et al., 2020; Maurer et al., 2021; Holland & Mehdi Ha-
ress, 2022) have been considered to explicitly account for
“worst-case” performance on learning tasks. Note that this
framework is distinct from adversarial learning (Qian et al.,
2022). SRMs may also be called L-risks, based on clas-
sical L-estimators (linear combinations of order statistics)
from the statistics literature (Shorack, 2017). We refer to
an SRM as “smooth” when ν > 0 (Mehta et al., 2023;
Levy et al., 2020; Michel et al., 2021), which is a common
relaxation considered by Lee et al. (2020); Michel et al.
(2021), for example. Optimized certainty equivalent (OCE)
and cumulative prospect theory (CPT) measures are moti-
vated similarly but the latter is not characterized as explic-
itly capturing worst-case expected loss over a set of pos-
sible distributions (Leqi et al., 2019; Lee et al., 2020). In
light of the convex-concave saddle-point problem interpre-
tation of (1), various incremental “two-loop” methods were
developed (Palaniappan & Bach, 2016; Yu et al., 2022;
Chavdarova et al., 2019; Thekumparampil et al., 2019; Curi
et al., 2020; Yang et al., 2020; Wang & Li, 2020; Yu et al.,
2022): one for updating the parameters (primal variables)
and one for reweighing the data (dual variables). Un-
like these approaches, our algorithm operates in the primal
space only, with a single, constant learning rate while en-
joying linear convergence to the SRM minimizer.

2. Problem Setup
Our object of study is an instantiation of (1) with spectral
risk measures (SRM). SRMs are defined by a collection of
non-negative weights σ1 ≤ · · · ≤ σn that sum to 1, called
the spectrum. The corresponding uncertainty set U(Pz) is
defined using the permutahedron P(σ) generated by σ,

P(σ) = ConvexHull
{(

σπ(1), . . . , σπ(n)

)
: π ∈ Πn

}
Πn = {permutations on [n]} .

The shifted distribution Q selects some q = (q1, . . . , qn) ∈
P(σ), a convex combination of reorderings of σ, and as-
signs weight qi to datum zi. This weight can be at most σn,

Superquantile P(σ) Extremile P(σ) ESRM P(σ)

σ1 σ2 σ3 σ1 σ2 σ3 σ1 σ2 σ3

Figure 1: Geometry of uncertainty sets. Illustration of the permutahedra P(σ) within the three-dimensional probability
simplex for the 0.25 and 0.5-superquantile (left), 1.5 and 2.5-extremile (center), and 1 and 3-ESRM (right). The size of
P(σ) increases for more non-uniform spectra σ.

at least σ1, or any value in between — see Fig. 1 for some
examples of SRMs, their spectra, and their associated per-
mutahedra P(σ). For p ∈ [0, 1], the p-superquantile, also
known as the conditional value-at-risk (CVaR) or the aver-
age top-k loss (Rockafellar & Royset, 2013; Kawaguchi &
Lu, 2020; Laguel et al., 2021) requires that k = np ele-
ments of σ be non-zero with equal probability and that the
remaining n − k are zero. Unlike the hard thresholding of
superquantile, the b-extremile (Daouia et al., 2019) and γ-
exponential spectral risk measure (Cotter & Dowd, 2006)
define their spectra by σi = (i/n)b−((i−1)/n)b for b ≥ 1
and σi = γeγ(i−1)/(1− e−γ) for γ > 0, respectively.

Recalling that Pz assigns weight 1/n to each of zi, we use
the empirical χ2-divergence Dχ2(Q∥Pz) =

∑n
i=1 n(qi −

1/n)2 = n ∥q − 1n/n∥22 shift penalty. Denoting ℓi(w) :=
ℓ(w, zi) as the loss function on example i and concatenat-
ing ℓ(w) = (ℓ1(w), . . . , ℓn(w)), problem (1) reads

max
Q∈U(Pz)

{EZ∼Q [ℓ(w,Z)]− νD(Q∥Pz)}

= max
q∈P(σ)

q⊤ℓ(w)− νn ∥q − 1n/n∥22 .

Using regularization parameter µ > 0, the spectral risk-
based objective we wish to minimize is thus

Lσ(w) := max
q∈P(σ)

Φν(ℓ(w), q) +
µ

2
∥w∥22 , (2)

where Φν(l, q) := q⊤l − νn ∥q − 1n/n∥22 . (3)

Similar to the typical regularization parameter in classical
statistical learning, ν controls the conditioning of the pri-
mal objective. Indeed, if each ℓi is G-Lipschitz and L-
smooth, i.e. w 7→ ∇ℓi(w) is L-Lipschitz, w.r.t. ∥·∥2,
we have that Lσ is Lν := (L + µ + G2/ν)-smooth and
µ-strongly convex. Then, the condition number of Lσ is
Lν/µ = κ + G2/(µν) with κ = 1 + L/µ. Thus, a larger
shift cost makes (3) better conditioned.

Optimizing Smooth Spectral Risks. The gradient of (3)
is given by Danskin’s theorem (Bertsekas, 1997) as

∇Lσ(w) =
n∑

i=1

qopt
i (ℓ(w))∇ℓi(w) + µw , (4)

where qopt(l) := argmax
q∈P(σ)

Φν(l, q), (5)

admitting gradient descent as a natural baseline for op-
timization. The gradient can be seen as a variation of
the standard gradient of ERM with an importance weight
qopt
i (ℓ(w)) assigned to the loss ℓi(w). The strong con-

cavity of the shift penalty not only ensures the uniqueness
of the optimal weights but also their Lipschitz-continuity:
∥qopt(l)− qopt(l′)∥2 ≤ ∥l − l′∥2/(2nν) (Nesterov, 2005).

The maximization over q can be expressed by standard con-

w1

w
2

w(1)

Φν(`(w), q(0))

w1

w
2

w(2)

Φν(`(w), q(1))

w1

w
2

w(3)

Φν(`(w), q(2))

Figure 2: Game-theoretic interpretation. At each iteration
of the SpecSAGA algorithm, the learner is provided a stochastic
gradient of a reweighted objective Φν(w, q(t)), whose landscape
depends on the current weights. For any sequence of “moves”
made by the learner w(0), w(1), . . ., the losses are reweighed us-
ing q(1), q(2), . . . computed by exactly solving an approximation
to the dual problem.

vex duality arguments as, see Appx. C,

max
q∈P(σ)

q⊤l − nν∥q − 1n/n∥22

= min
z∈Rn:zπ1

≤...≤zπn

n∑
i=1

σizπi + ω⋆(li − zi),

where ω⋆ is the convex conjugate of nν∥·−1n/n∥22 and π a
permutation on [n] that orders the losses in non-decreasing
order: lπ1 ≤ . . . ≤ lπn . This is an isotonic regression
problem that can be solved exactly by the Pool Adjacent
Violators algorithm (Best et al., 2000). It runs in O(n) time
when the losses are sorted; this in turn requires O(n log n)
time. The optimal weights qopt(l) can be obtained from
the optimal z∗ as qopt

i (l) = ∇ω⋆(li − z∗i) to compute the
gradient of the overall objective. Thus, the main bottleneck
is computing the n losses at the current iterate w, each one
costing O(d) operations.

It is not straightforward to alleviate this call to n losses
evaluations as minibatch gradient estimators with O(1)-
samples are biased estimators of the batch gradient for non-
uniform σ. Given a minibatch S ⊂ [n] with |S| = m,
the natural stochastic gradient estimator is ∇Lσ̂(w;S) :=
∇
[
maxq∈P(σ̂) Φν ({ℓi(w)}i∈S , q)

]
+ µw, where we use

the minibatch spectrum σ̂j = σ(j−1)n/m+1 + · · ·+ σjn/m

for j ∈ [m] and considered for simplicity that m divides n.
A stochastic gradient algorithm with this estimator does not
minimize (3); it actually optimizes ES [Lσ̂(w;S)], which
differs from the true objective Lσ(w) by O(1/

√
m) (Levy

et al., 2020; Mehta et al., 2023; Kawaguchi & Lu, 2020).
Thus, vanilla stochastic gradient descent cannot be em-
ployed to minimize the original objective (3).

3. The SpecSAGA Algorithm
We present the SpecSAGA algorithm to optimize (3),
building up the full algorithm in Algorithm 1.

Our starting point is the gradient formula (4). It is expen-

sive because we need to compute the loss vector ℓ(w) at
a O(nd) cost of retrieving the optimal weights qopt(ℓ(w)).
However, a reasonable approximation l of the losses ℓ(w)
can be used to approximate the weights with qopt(l) in O(n)
time. SpecSAGA presented in Algorithm 1 leverages this
idea. Equipped with the approximate weights q = qopt(l)
of a running estimate l of the loss vector ℓ(w), we con-
sider a stochastic gradient nqi(∇ℓi(w) + µw) of the sur-
rogate objective

∑n
i=1 qiℓi(w) + µ∥w∥22/2 using a sample

i ∼ Unif[n]. Optimizing such a surrogate objective at each
step amounts to letting an adversary shift the landscape of
the objective at each step as illustrated in Fig. 2.

This stochastic gradient estimator has better bias proper-
ties than the one from Sec. 2. Due to the strong concavity
of the shift penalty, the approximation of the losses trans-
lates directly in terms of approximation of the weights:
∥q − qopt(ℓ(w))∥2 ≤ ∥l − ℓ(w)∥2/(2nν) for q, l com-
puted in Line 8 of Algorithm 1. In particular, if ν is large,
the weights remain stable even if the losses can vary. The
loss estimate l is driven by the current iterate based on its
update in Line 8. The updated loss estimate l+ satisfies
Eit [l

+] = 1
nℓ(w) + (1− 1

n)l. For Lipschitz losses, by ap-
propriately choosing the step size, a faithful approximation
of the losses around the current iterate can be accumulated
in the loss vector to ensure overall convergence. As w con-
verges to w⋆, we expect l → ℓ(w⋆) and q → qopt(ℓ(w⋆)),
i.e., our gradient estimator exhibits vanishing bias.

This gradient estimator can have a large variance due to
sampling of i even when w ≈ w⋆. We tackle this with a
zero-mean control variate of the form nρitgit − ḡ using a
table g1, . . . , gn ∈ Rd of gradients and its weighted mean
ḡ =

∑n
i=1 ρigi. These weights ρ ∈ Rn

+ are meant as an
unnormalized proxy of q(ℓ(w)). As w converges to w⋆,
we expect gi → ∇ℓi(w⋆) + µw⋆ and ρ → qopt(ℓ(w⋆)), so
the control variate nρigi − ḡ correlates strongly with the
estimator nqit(∇ℓit(w) + µw). This allows the corrected
update in Line 7 to have vanishing variance while retaining
the same bias reduction. Crucially, since ρ is not normal-
ized to sum to 1 like q, the update to ḡ in Line 9 takes O(d)
time, rather than O(nd) if we were to compute

∑n
i=1 qigi.

The full algorithm is given in Algorithm 1. Unlike LSVRG,
there is no epoch length hyperparameter, and the approxi-
mation q is updated every iteration. Note that the exposition
in Algorithm 1 is intended for conceptual clarity and can be
further optimized, as we describe next.

Computational Aspects. The weight update in Line 8
is solved exactly by (i) sorting the vector of losses in
O(n log n), (ii) plugging the sorted loss table l into the
Pool Adjacent Violators (PAV) algorithm running in O(n)
time, as discussed in Sec. 2. Because only one element of l
changes every iterate, we may simply bubble sort l starting
from the index that was changed. While in the worst case,

Algorithm 1 SpecSAGA

Inputs: Initial point w0, spectrum σ, stepsize η > 0,
number of iterations T , regularization parameter µ >
0, shift cost ν > 0.

1: Initialize w ← w0, li ← ℓi(w0), and gi ← ∇ℓi(w0)+
µw0 for i = 1, . . . , n.

2: Compute q ← qopt (l)
3: Set ρ← q and ḡ ←∑n

i=1 ρigi ∈ Rd

4: for each iterate do
5: Sample i ∼ Unif[n]
6: v ← nqi(∇ℓi(w) + µw)− nρigi + ḡ
7: w ← w − ηv ▷ Parameter Update
8: li ← ℓi(w) and q ← qopt (l) ▷ Adversary Update
9: ḡ ← ḡ − ρigi + qi (∇ℓi(w) + µw)

10: gi ← ∇ℓi(w) + µw
11: ρi ← qi. ▷ Control Variate Updates

Output: Final point w.

this cost is O(n), it is exactly O(kt) where kt is the number
of swaps needed to sort l from iterate t to t+ 1. We find in
experiments that the sorted order of l stabilizes quickly.

The storage of the gradient table g requires O(nd) space in
general, but it can be reduced to O(n) for generalized linear
models and nonlinear additive models. For losses of the
form ℓi(w) = h(x⊤

i w, yi), for a differentiable loss h and
scalar output yi, we have ∇ℓi(w) = xi h

′(x⊤
i w, yi). We

only need to store the scalar h′(x⊤
i w, yi), so SpecSAGA

requires O(n+ d) memory.

In terms of time complexity, Lines 7 and 9 require O(d)
operations and Line 8 requires at most O(n) operations,
so that in total the iteration complexity is O(n + d). In
comparison, a full batch gradient descent requires O(nd)
operations so SpecSAGA decouples the cost of computing
the weights and accessing the losses and gradients.

Convergence Analysis. We assume throughout that each
ℓi convex, G-Lipschitz, and L-smooth. The convergence
guarantees depend on the condition numbers κ = 1+ L/µ
of the individual losses, as well as a measure κσ = nσn of
the skewness of the spectrum.

Theorem 1. By decoupling the sampling of the losses and
the gradients as described in Appx. D.3, SpecSAGA with
a small enough step size is guaranteed to converge lin-
early for all ν > 0. If, in addition, the shift cost is
ν ≥ Ω(G2/µ), then the sequence of iterates (w(t)) gen-
erated by SpecSAGA with a single sampling and learning
rate η = (6(L + 2µ)κσ)

−1 converges linearly at a rate
τ = max

{
2n, 12κσ(κ+ 1)2/κ

}
, i.e.,

E∥w(t)−w⋆∥22 ≤ (1+2n+2n2) exp(−t/τ)∥w(0)−w⋆∥22 .

The number of iterations t required by SpecSAGA to
achieve E∥w(t) − w⋆∥22 ≤ ε (provided that ν is large
enough) is t = O((n + κκσ) log(1/ε)). This exactly
matches the rate of LSVRG. Unlike LSVRG, SpecSAGA is
guaranteed to converge linearly for any shift cost — this re-
quires two samples per update for technical reasons. Com-
pared to primal-dual SAGA, our algorithm requires only
one learning rate, streamlining its implementation.

4. Towards Broader Shifts: f -Divergences
and Hidden Smoothness

In this section, we adapt SpecSAGA to apply to other shift
penalties based on f -divergences and reduce the require-
ment on the shift cost ν.

Handling General f -Divergence Shift Penalties. A shift
penalty dampens the adversary’s power in (3), ensuring
they cannot move the unfavorable distribution q too far
from the uniform distribution 1n/n. While we focus
primarily on the χ2-divergence, other divergences such
as Kullback-Leibler (KL) and squared Hellinger distance
are frequently employed as measures of discrepancy be-
tween distributions in this context. They have been uti-
lized as convex surrogates to improve statistical generaliza-
tion (Lam, 2016; Namkoong & Duchi, 2017; Lam, 2019;
Duchi et al., 2021), promote fairness (Hashimoto et al.,
2018; Williamson & Menon, 2019), and model adversar-
ial games (Bauso et al., 2017; Nowozin et al., 2016).

SpecSAGA can be extended to handle general f -
divergences by replacing the shift penalty in Line 8
of Alg. 1. Given a convex function f : R+ →
R+, recall that the associated f -divergence is defined as
Df (s∥q) =

∑n
i=1 qif(si/qi). The dual maximization

q∗(l) = argmaxq∈P(σ) q
⊤l − νDf (q∥1n/n) can be ef-

ficiently solved for many f -divergences via their dual as
an isotonic optimization problem. SpecSAGA thus has the
same computational complexity as in Sec. 3.

Similarly, we can extend Thm. 1 for α-strongly convex f -
divergences. This includes the KL and Jeffreys divergences
with α = 1 w.r.t. ∥·∥1. In general, other common exam-
ples such as the Jensen-Shannon and Le Cam divergences
are strongly convex with α dependent on κσ (Melbourne,
2020).

Theorem 2. Suppose the f -divergence q 7→ Df (q ∥1n/n)
is α-strongly convex w.r.t. ∥·∥p for some p ∈
[1, 2]. Then, the f -penalized version of SpecSAGA
satisfies the guarantee of Thm. 1 as long as ν ≥
Ω
(√

nG
αµ (∥∇ℓ(w⋆)∥2,p +G

√
n/κκσ)

)
, where∇ℓ(w⋆) ∈

Rn×d is the Jacobian of ℓ at w⋆.

The condition on ν depends on the geometry of the
shift penalty. For the χ2-divergence, we have that

∥∇ℓ(w⋆)∥2,p ≤
√
nG, so this condition is implied by

that of Thm. 1. For the KL divergence, we have that
∥∇ℓ(w⋆)∥1,p ≤ G, so the requirement on ν can be up to√
n better when n < κκσ .

SpecSAGA with No Shift Penalty. Note that SpecSAGA
requires ν > 0 as a condition for its convergence guar-
antee, particularly due to the smoothness it provides the
objective. Historically, however, SRMs such as the condi-
tional value-at-risk have been employed as coherent risk
measures for distributions of losses (Acerbi & Tasche,
2002) with no shift penalty, i.e. ν = 0. For a vector
(l1, . . . , ln) ∈ Rn (corresponding to a discrete empirical
distribution of losses), the SRM aggregates the rank statis-
tics l(1) ≤ · · · ≤ l(n) with weights supplied by σ as
maxq∈P(σ) q

⊤l =
∑n

i=1 σil(i). This form can be identi-
fied as an L-estimator in statistics (Shorack, 2017), and for
continuous distributions, the weighted sum of order statis-
tics becomes a weighted integral of the quantile function. If
these losses are separated at the optimum, we may achieve
linear convergence with SpecSAGA even with ν = 0.
This behavior can be explained as the algorithm leverag-
ing hidden smoothness in the objective (3), as is differen-
tiable at points satisfying ℓ(1)(w) < · · · < ℓ(n)(w), where
ℓ(i)(w) denotes the i-th smallest loss at w. We assume that
ℓ1, . . . , ℓn are convex and that µ > 0.

Proposition 3. Let w⋆
ν be the unique minimizer of (3)

with shift cost ν ≥ 0. Assume that the values
ℓ1(w

⋆
0), . . . , ℓn(w

⋆
0) are all distinct. Then, there exists a

constant ν0 > 0 such that w⋆
0 = w⋆

ν exactly for all ν ≤ ν0.
Thus, running decoupled SpecSAGA (Appx. D.3) converges
to the minimizer w⋆

0 .

In particular, ν0 is chosen so that ν0 (σi+1 − σi) <
ℓ(i+1)(w

⋆
0) − ℓ(i)(w

⋆
0) for each i, or as the multiplicative

factor that relates gaps in the spectrum to the gaps in the
loss at optimality (see Appx. B).

Smoother Gradient Oracles. SpecSAGA can leverage
more information about the losses using the Moreau enve-
lope of each loss ℓi and its gradient (Bauschke et al., 2011;
Rockafellar, 1976). Specifically, we consider oracles re-
turning ∇ env(ℓi)(w) where env(ℓi) = infv∈Rd ℓi(v) +
∥w − v∥22; this can be expressed in terms of the proximal
operators of the losses (Bauschke et al., 2011). Such an ap-
proach has been considered for ERM by (Defazio, 2016) to
accelerate the SAGA algorithm. These oracles can easily
be accessed either in closed form or by efficient subrou-
tines in common machine learning settings (Defazio, 2016;
Frerix et al., 2018; Roulet & Harchaoui, 2022), and we can
easily adapt Alg. 1 to leverage such oracles. The resulting
algorithm enjoys a linear convergence guarantee similar to
Thm. 1 with a less restrictive condition on the shift cost ν,
while still providing competitive performance in practice.
We refer to Appx. F for details.

5. Experiments
In this section, we compare SpecSAGA against competitors
in a variety of tasks. While we focus attention on its perfor-
mance as an optimizer with respect to its training objective,
we also highlight metrics of interest on the test set in fair-
ness and distribution shift benchmarks as they constitute
common use-cases for distributionally robust objectives.

Setting, Baselines, and Evaluation. We consider super-
vised learning tasks for which each data point zi = (xi, yi)
is an input-label pair. Losses are of the form ℓi(w) :=
h(yi, w

⊤ϕ(xi)), where ϕ(·) is a fixed feature embedding
function and h measures the error between the predicted
and true labels. We use 3 choices of the spectrum σ: 0.5-
superquantile, 2-extremile, and 1-ESRM.

We compare against four baselines: minibatch stochastic
gradient descent (SGD), stochastic regularized dual aver-
aging (SRDA) (Xiao, 2009), Saddle-SAGA (Palaniappan
& Bach, 2016), and LSVRG (Mehta et al., 2023). For SGD
and SRDA, we use a batch size of 64, and for LSVRG we
use an epoch length of n. In the case of Saddle-SAGA,
we find that allowing different learning rates for the primal
and dual variables improves theoretically and experimen-
tally (Appx. E) and compare against the improved heuristic
(setting the dual stepsize as 10n times smaller than the pri-
mal stepsize) in our experiments. We plot

Suboptimality(w) =
Lσ(w)− Lσ(w

⋆)

Lσ(w0)− Lσ(w⋆)
, (6)

where w⋆ is approximated by running LBFGS (Nocedal &
Wright, 1999) on the objective until convergence. The x-
axis displays the number of calls to any first-order oracle
w 7→ (ℓi(w),∇ℓi(w)) divided by n, i.e. the number of
passes through the training set. We fix the shift cost ν = 1
and regularization parameter µ = 1/n. Further details of
the setup and additional results are given in Appxs H and I
respectively.

5.1. Tabular Least-Squares Regression

We consider five tabular regression benchmarks under
square loss. The datasets used are yacht (n = 244)
(Tsanas & Xifara, 2012), energy (n = 614) (Ba-
ressi Segota et al., 2020), concrete (n = 824) (Yeh,
2006), kin8nm (n = 6553) (Akujuobi & Zhang, 2017),
and power (n = 7654) (Tüfekci, 2014). The training
curves for each optimizer are shown in Fig. 3.

Results. Across datasets and objectives, we find that Spec-
SAGA exhibits linear convergence at a rate no worse than
SaddleSAGA and LSVRG, but one that is often much bet-
ter. For example, SpecSAGA converges to precision 10−8

for the superquantile on concrete and the extremile on
powerwithin half the number of passes that LSVRG takes

10−7

10−5

10−3

10−1
S

up
er

qu
an

ti
le

yacht

10−7

10−4

10−1

energy

10−7

10−4

10−1

concrete

10−7

10−5

10−3

10−1

kin8nm

10−7

10−4

10−1

power

10−7

10−5

10−3

10−1

E
xt

re
m

ile

10−7

10−4

10−1

10−7

10−4

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

E
S

R
M

0 16 32 48 64
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 3: Regression benchmarks. The y-axis measures the suboptimality as given by (6), while the x-axis measures
the number of calls to the function value/gradient oracle divided by n. Rows indicate different spectral risk objectives and
columns indicate datasets.

for the same suboptimality value. Similarly, for the ESRM
on yacht, SaddleSAGA requires 64 epochs to reach the
same precision as SpecSAGA at 40 epochs. The direct
stochastic methods, SGD and SRDA, have incurable bias
and variance and fail to converge for any learning rate.

5.2. Fair Classification and Regression

Inspired by (Williamson & Menon, 2019), we explore the
relationship between robust learning and group fairness on
2 common tabular benchmarks. Diabetes 130-Hospitals
(diabetes) is a binary classification task of predicting
readmission for diabetes patients based on 10 years worth
of clinical data from 130 US hospitals (Rizvi et al., 2014).
Adult Census (acsincome) is a regression task of pre-
dicting income of US adults given features compiled from
the American Community Survey (Ding et al., 2021).

Evaluation. We evaluate fairness with the statistical parity
score, which compares predictive distributions of a model
given different values of a particular protected attribute
(Agarwal et al., 2018; 2019). Letting Z = (X,Y,A) de-
note a random (input, label, metadata attribute) triplet, a
model g is said to satisfy statistical parity (SP) if the condi-
tional distribution of g(X) over predictions given A = a is
equal for any value a. Intuitively, statistical parity scores
measure the maximum deviation between these distribu-
tions for any over a, so values close to zero indicate SP-
fairness. In diabetes, we use gender as the protected

attribute A, whereas in acsincome we use race as the
protected attribute. Note that the protected attributes are
not supplied to the models. The results are given in Fig. 4.

Results. Firstly, we note that SpecSAGA converges
rapidly on both datasets while LSVRG fails to converge
on diabetes and SaddleSAGA fails to converge on
acsincome. Secondly, LSVRG does not stabilize with
respect to classification SP, showing a mean/std SP score of
1.38±0.25% within the final ten passes on the diabetes
superquantile, whereas SpecSAGA gives 0.82±0.00%, i.e.,
a 40% relative improvement with greater stability. While
SaddleSAGA does stabilize in SP on diabetes, it fails
to qualitatively decrease at all on the acsincome. In-
terestingly, while suboptimality and SP-fairness are cor-
related for SpecSAGA, SGD (reaching only 10−1 subop-
timality with respect to the superquantile objectives on
acsincome) achieves a lower fairness score. Again,
across both suboptimality and fairness, SpecSAGA is ei-
ther the best or close to the best.

.5.3. Image & Text Classification with Distribution Shift

We consider two tasks from the WILDS distribution shift
benchmark (Koh et al., 2021). The Amazon Reviews
(amazon) task (Ni et al., 2019) consists of classifying text
reviews of products to a rating of 1-5, with disjoint train and
test reviewers. The iWildCam (iwildcam) image classi-
fication challenge (Beery et al., 2020) contains labeled im-

10−5

10−3

10−1

S
ub

op
ti

m
al

it
y

diabetes
Superquantile

10−6

10−4

10−2

100

diabetes
Extremile

0.00

0.02

0.04

0.06

S
ta

ti
st

ic
al

P
ar

it
y

(C
la

ss
ifi

ca
ti

on
)

0.01

0.02

0.03

0.04

10−2

10−1

100

S
ub

op
ti

m
al

it
y

acsincome
Superquantile

10−2

10−1

100

acsincome
ESRM

0 16 32 48 64

Passes

0.74

0.76

0.78

S
ta

ti
st

ic
al

P
ar

it
y

(R
eg

re
ss

io
n)

0 16 32 48 64

Passes

0.72

0.74

0.76

SGD LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 4: Fairness benchmarks. First row: Training
curves for optimizers on the superquantile and extremile for
diabetes. Second row: Statistical parity scores for the
two classification objectives on diabetes. Third row:
Training curves for optimizers on the superquantile and ex-
tremile for acsincome. Bottom row: Statistical parity
scores for regression objectives on acsincome. Values
closer to zero indicate better SP-fairness.

ages of animals, flora, and backgrounds from camera traps
placed in wilderness sites. Shifts are caused due to changes
in camera angles, locations, lighting, etc. We use a sam-
ple of n = 10000 and n = 20000 examples respectively.
For both datasets, we train a linear probe classifier, i.e., a
linear model over a frozen deep feature representation. For
amazon, we use a pretrained BERT model (Devlin et al.,
2019) fine-tuned on a held-out subset of the Amazon Re-
views training set for 2 epochs. For iwildcam, we use a
ResNet50 pretrained on ImageNet (without fine-tuning).

Evaluation. Apart from the training suboptimality, we
evaluate the spectral risk objectives on their robustness to
subpopulation shifts. We define each subpopulation group
based on the true label. For amazon, we use the worst
group misclassification error on the test set as a robustness
measure (Sagawa et al., 2020). For iwildcam, we use the

0 20
Passes

10−5

10−3

10−1

S
ub

op
ti

m
al

it
y

Superquantile

0 20
Passes

0.8

0.9

1.0

W
or

st
G

ro
up

E
rr

or

Superquantile

0 20
Passes

10−4

10−2

100

S
ub

op
ti

m
al

it
y

Extremile

0 20
Passes

0.8

0.9

1.0

W
or

st
G

ro
up

E
rr

or

Extremile

0 20 40 60
Passes

10−2

10−1

100

S
ub

op
ti

m
al

it
y

Superquantile

0.70

0.71

0.72

0.73

M
ed

ia
n

G
ro

up
E

rr
or

Superquantile

0 20 40 60
Passes

10−2

10−1

100

S
ub

op
ti

m
al

it
y

Extremile

0.70

0.71

0.72

0.73

M
ed

ia
n

G
ro

up
E

rr
or

Extremile

SGD LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 5: Distribution shift results. Top row: Training
curves and worst group misclassification error on amazon
test. Bottom row: Training curves and median group mis-
classification error on the iwildcam test set. Smaller val-
ues indicate better performance for all metrics.

median group error owning to its larger number of classes.

Results. For both amazon and iwildcam, SpecSAGA
and SaddleSAGA (with our heuristic) outperform LSVRG
in training suboptimality. We hypothesize that this phe-
nomenon is likely due to checkpoints of LSVRG getting
stale over the n-length epochs for these datasets with large
n (leading to a slow reduction of bias). In contrast, Spec-
SAGA and SaddleSAGA avoid this issue by dynamically
updating the running estimates of the importance weights.

For the worst group error for amazon, SpecSAGA
and SaddleSAGA outperform LSVRG. SpecSAGA has
a mean/std worst group error of 77.38 ± 0.00% over
the last ten passes on the extremile, whereas Saddle-
SAGA has a slightly worse 77.53 ± 1.57%. Interest-
ingly, on iwildcam, LSVRG and SpecSAGA demon-
strate stronger generalization performance, nearly 1pp bet-
ter, than SaddleSAGA in terms of median group misclassi-
fication rate. In summary, across both tasks and all objec-
tives, SpecSAGA demonstrates the best or close to the best
performance on both benchmarks.

6. Discussion
In this paper, we introduced SpecSAGA, an algorithm for
optimizing smooth spectral risk measures with a linear con-
vergence guarantee. The algorithm demonstrates rapid lin-
ear convergence on benchmark examples and has the prac-
tical benefits of converging for any shift cost and having
a single hyperparameter. While we primarily used the χ2-
shift penalty throughout this work, we derive methods for
other penalties derived from taking f -divergences between
the shifted distribution Q and the original one Pz . Promis-
ing avenues for future work include extensions to the non-
convex setting by considering the regular subdifferential
and handling missing data problems.

References
Acerbi, C. and Tasche, D. On the Coherence of Expected

Shortfall. Journal of Banking & Finance, 26, 2002.

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and
Wallach, H. A Reductions Approach to Fair Classifica-
tion. In ICML, volume 80. PMLR, 2018.

Agarwal, A., Dudik, M., and Wu, Z. S. Fair Regres-
sion: Quantitative Definitions and Reduction-Based Al-
gorithms. In ICML, volume 97. PMLR, 2019.

Ahmadi-Javid, A. Entropic Value-at-Risk: A New Coher-
ent Risk Measure. Journal of Optimization Theory and
Applications, 155, 2012.

Akujuobi, U. and Zhang, X. Delve: A Dataset-Driven
Scholarly Search and Analysis System. SIGKDD Explor.
Newsl., 19, 2017.

Baressi Segota, S., Andelic, N., Kudlacek, J., and Cep,
R. Artificial Neural Network for Predicting Values
of Residuary Resistance per Unit Weight of Displace-
ment. Journal of Maritime & Transportation Science,
57, 2020.

Bauschke, H. H., Combettes, P. L., et al. Convex Analysis
and Monotone Operator Theory in Hilbert Spaces, vol-
ume 408. Springer, 2011.

Bauso, D., Gao, J., and Tembine, H. Distributionally Ro-
bust Games: F-Divergence and Learning. In Proceed-
ings of the 11th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools. Association
for Computing Machinery, 2017.

Beery, S., Cole, E., and Gjoka, A. The iWildCam 2020
Competition Dataset. arXiv preprint arXiv:2004.10340,
2020.

Ben-Tal, A., den Hertog, D., Waegenaere, A. D., Melen-
berg, B., and Rennen, G. Robust Solutions of Optimiza-
tion Problems Affected by Uncertain Probabilities. Man-
agement Science, 59, 2013.

Bertsekas, D. P. Nonlinear Programming. Journal of the
Operational Research Society, 48, 1997.

Best, M. J., Chakravarti, N., and Ubhaya, V. A. Mini-
mizing Separable Convex Functions Subject to Simple
Chain Constraints. SIAM Journal on Optimization, 10,
2000.

Blanchet, J., Kang, Y., and Murthy, K. Robust Wasserstein
Profile Inference and Applications to Machine Learning.
Journal of Applied Probability, 56, 2019.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast
Differentiable Sorting and Ranking. In ICML. PMLR,
2020.

Bui, A. T., Le, T., Tran, Q. H., Zhao, H., and Phung, D.
A Unified Wasserstein Distributional Robustness Frame-
work for Adversarial Training. In ICLR, 2022.

Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien,
S. Reducing Noise in GAN Training with Variance Re-
duced Rxtragradient. NeurIPS, 32, 2019.

Cotter, J. and Dowd, K. Extreme Spectral Risk Mea-
sures: an Application to Futures Clearinghouse Margin
Requirements. Journal of Banking & Finance, 30, 2006.

Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. Adap-
tive Sampling for Stochastic Risk-Averse Learning. In
NeurIPS, volume 33. Curran Associates, Inc., 2020.

Daouia, A., Gijbels, I., and Stupfler, G. Extremiles: A New
Perspective on Asymmetric Least Squares. Journal of
the American Statistical Association, 114, 2019.

Defazio, A. A Simple Practical Accelerated Method for
Finite Sums. In NeurIPS, volume 29, 2016.

Defazio, A. and Bottou, L. On the Ineffectiveness of
Variance Reduced Optimization for Deep Learning. In
NeurIPS, volume 32. Curran Associates, Inc., 2019.

Defazio, A., Bach, F., and Lacoste-Julien, S. SAGA: A Fast
Incremental Gradient Method With Support for Non-
Strongly Convex Composite Objectives. NeurIPS, 27,
2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-scale Hierarchical Image
Database. In CVPR, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In NAACL, 2019.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring
Adult: New Datasets for Fair Machine Learning. In
NeurIPS, volume 34. Curran Associates, Inc., 2021.

Dommel, P. and Pichler, A. Convex Risk Measures Based
on Divergence. Pure and Applied Functional Analysis,
6, 2021.

Duchi, J. C., Glynn, P. W., and Namkoong, H. Statistics
of Robust Optimization: A Generalized Empirical Like-
lihood Approach. Mathematics of Operations Research,
46, 2021.

Esfahani, P. M. and Kuhn, D. Data-driven Distribution-
ally Robust Optimization using the Wasserstein Metric:
Performance Guarantees and Tractable Reformulations.
Mathematical Programming, 171, 2018.

Fan, Y., Lyu, S., Ying, Y., and Hu, B. Learning with Aver-
age Top-k Loss. In NeurIPS, volume 30, 2017.

Frerix, T., Möllenhoff, T., Möller, M., and Cremers, D.
Proximal Backpropagation. In ICLR, 2018.

Gower, R. M., Schmidt, M., Bach, F., and Richtárik, P.
Variance-Reduced Methods for Machine Learning. Pro-
ceedings of the IEEE, 108, 2020.

Graham, C. and Talay, D. Stochastic Simulation and Monte
Carlo Methods. Springer Berlin, Heidelberg, 2013.

Haddadpour, F., Kamani, M. M., Mahdavi, M., and amin
karbasi. Learning Distributionally Robust Models at
Scale via Composite Optimization. In ICLR, 2022.

Hashimoto, T., Srivastava, M., Namkoong, H., and Liang,
P. Fairness without Demographics in Repeated Loss
Minimization. In ICML, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In CVPR, 2016.

Hiriart-Urruty, J.-B. and Lemaréchal, C. Fundamentals of
Convex Analysis. Springer Science & Business Media,
2004.

Holland, M. J. and Mehdi Haress, E. Spectral Risk-based
Learning Using Unbounded Losses. In AISTATS, volume
151, 2022.

Inatsu, Y., Takeno, S., Karasuyama, M., and Takeuchi,
I. Bayesian Optimization for Distributionally Robust
Chance-constrained Problem. In ICML, volume 162.
PMLR, 2022.

Johnson, R. and Zhang, T. Accelerating Stochastic Gra-
dient Descent using Predictive Variance Reduction. In
NeurIPS, volume 26, 2013.

Kallus, N., Mao, X., Wang, K., and Zhou, Z. Doubly Ro-
bust Distributionally Robust Off-Policy Evaluation and
Learning. In ICML, volume 162. PMLR, 2022.

Kawaguchi, K. and Lu, H. Ordered SGD: A New Stochas-
tic Optimization Framework for Empirical Risk Mini-
mization. In AISTATS, volume 108, 2020.

Khim, J., Leqi, L., Prasad, A., and Ravikumar, P. Uniform
Convergence of Rank-weighted Learning. In ICML, vol-
ume 119, 2020.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W.,
Earnshaw, B. A., Haque, I. S., Beery, S., Leskovec, J.,
Kundaje, A., Pierson, E., Levine, S., Finn, C., and Liang,
P. WILDS: A Benchmark of in-the-Wild Distribution
Shifts, 2021.

Kuhn, D., Esfahani, P. M., Nguyen, V. A., and
Shafieezadeh-Abadeh, S. Wasserstein Distributionally
Robust optimization: Theory and Applications in Ma-
chine Learning. Operations research & management sci-
ence in the age of analytics, 2019.

Laguel, Y., Pillutla, K., Malick, J., and Harchaoui, Z. Su-
perquantiles at Work: Machine Learning Applications
and Efficient Subgradient Computation. Set-Valued and
Variational Analysis, 2021.

Lam, H. Robust Sensitivity Analysis for Stochastic Sys-
tems. Mathematics of Operations Research, 41, 2016.

Lam, H. Recovering Best Statistical Guarantees via
the Empirical Divergence-based Distributionally Robust
Optimization. Operations Research, 67, 2019.

Lee, J., Park, S., and Shin, J. Learning Bounds for Risk-
sensitive Learning. In NeurIPS, volume 33, 2020.

Leqi, L., Prasad, A., and Ravikumar, P. K. On Human-
Aligned Risk Minimization. In NeurIPS, volume 32,
2019.

Levy, D., Carmon, Y., Duchi, J., and Sidford, A. Large-
Scale Methods for Distributionally Robust Optimization.
In NeurIPS, volume 33, 2020.

Li, Y., Saeed, D., Zhang, X., Ziebart, B., and Gimpel, K.
Moment Distributionally Robust Tree Structured Predic-
tion. In NeurIPS, volume 35. Curran Associates, Inc.,
2022.

Liu, J., Wu, J., Li, B., and Cui, P. Distributionally Ro-
bust Optimization with Data Geometry. In NeurIPS, vol-
ume 35. Curran Associates, Inc., 2022a.

Liu, Z., Bai, Q., Blanchet, J., Dong, P., Xu, W., Zhou, Z.,
and Zhou, Z. Distributionally Robust Q-Learning. In
ICML, volume 162. PMLR, 2022b.

Lotidis, K., Bambos, N., Blanchet, J., and Li, J. Wasser-
stein Distributionally Robust Linear-Quadratic Estima-
tion under Martingale Constraints. In AISTATS, volume
206. PMLR, 2023.

Maurer, A., Parletta, D. A., Paudice, A., and Pontil, M.
Robust Unsupervised Learning via L-statistic Minimiza-
tion. In ICML. PMLR, 2021.

Mehta, R., Roulet, V., Pillutla, K., Liu, L., and Harchaoui,
Z. Stochastic Optimization for Spectral Risk Measures.
In AISTATS, 2023.

Melbourne, J. Strongly Convex Divergences. Entropy, 22,
2020.

Michel, P., Hashimoto, T., and Neubig, G. Modeling the
Second Player in Distributionally Robust Optimization.
In ICLR, 2021.

Michel, P., Hashimoto, T., and Neubig, G. Distributionally
Robust Models with Parametric Likelihood Ratios. In
ICLR, 2022.

Namkoong, H. and Duchi, J. C. Variance-based Regular-
ization with Convex Objectives. NeurIPS, 30, 2017.

Nesterov, Y. Smooth Minimization of Non-Smooth Func-
tions. Mathematical programming, 103, 2005.

Nesterov, Y. Lectures on Convex Optimization. Springer
Publishing Company, Incorporated, 2nd edition, 2018.

Ni, J., Li, J., and McAuley, J. Justifying Recommenda-
tions using Distantly-Labeled Reviews and Fine-grained
Aspects. In EMNLP, 2019.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Nowozin, S., Cseke, B., and Tomioka, R. f-GAN: Train-
ing Generative Neural Samplers using Variational Diver-
gence Minimization. In NeurIPS, volume 29. Curran As-
sociates, Inc., 2016.

Palaniappan, B. and Bach, F. Stochastic Variance Reduc-
tion Methods for Saddle-Point Problems. NeurIPS, 29,
2016.

Pichler, A. and Schlotter, R. Entropy Based Risk Measures.
European Journal of Operational Research, 285, 2020.

Pillutla, K., Laguel, Y., Malick, J., and Harchaoui, Z. Fed-
erated Learning with Superquantile Aggregation for Het-
erogeneous Data. Mach. Learn., 2023.

Piratla, V., Netrapalli, P., and Sarawagi, S. Focus on the
Common Good: Group Distributional Robustness Fol-
lows. In ICLR, 2022.

Qian, Z., Huang, K., Wang, Q., and Zhang, X.-Y. A Sur-
vey of Robust Adversarial Training in Pattern Recogni-
tion: Fundamental, Theory, and Methodologies. Pattern
Recognit., 131, 2022.

Rahimian, H. and Mehrotra, S. Frameworks and Results in
Distributionally Robust Optimization. Open Journal of
Mathematical Optimization, 3, 2022.

Rényi, A. On the Theory of Order Statistics. Acta Mathe-
matica Academiae Scientiarum Hungarica, 4, 1953.

Rizvi, A., Strack, B., DeShazo, J. P., Gennings, C., Olmo,
J. L., Ventura, S., Cios, K. J., and Clore, J. N. Impact
of HbA1c Measurement on Hospital Readmission Rates:
Analysis of 70,000 Clinical Database Patient Records.
BioMed Research International, 2014, 2014.

Rockafellar, R. T. Monotone Operators and the Proximal
Point Algorithm. SIAM Journal on Control and Opti-
mization, 14, 1976.

Rockafellar, R. T. and Royset, J. O. Superquantiles and
Their Applications to Risk, Random Variables, and Re-
gression. In Theory Driven by Influential Applications.
Informs, 2013.

Roulet, V. and Harchaoui, Z. Differentiable Programming
à la Moreau. In ICASSP. IEEE, 2022.

Sagawa, S., Koh*, P. W., Hashimoto, T. B., and Liang,
P. Distributionally Robust Neural Networks. In ICLR,
2020.

Shorack, G. Probability for Statisticians. Springer Texts in
Statistics, 2017.

Tay, S. S., Foo, C. S., Daisuke, U., Leong, R., and Low, B.
K. H. Efficient Distributionally Robust Bayesian Opti-
mization with Worst-case Sensitivity. In ICML, volume
162. PMLR, 2022.

Thekumparampil, K. K., Jain, P., Netrapalli, P., and Oh, S.
Efficient Algorithms for Smooth Minimax Optimization.
In NeurIPS, volume 32. Curran Associates, Inc., 2019.

Tsanas, A. and Xifara, A. Accurate Quantitative Estimation
of Energy Performance of Residential Buildings Using
Statistical Machine Learning Tools. Energy and Build-
ings, 49, 2012.

Tüfekci, P. Prediction of Full Load Electrical Power Output
of a Base Load Operated Combined Cycle Power Plant
using Machine Learning Methods. International Journal
of Electrical Power & Energy Systems, 60, 2014.

Vu, H., Tran, T., Yue, M.-C., and Nguyen, V. A. Distribu-
tionally Robust Fair Principal Components via Geodesic
Descents. In ICLR, 2022.

Wang, S., Si, N., Blanchet, J., and Zhou, Z. A Finite
Sample Complexity Bound for Distributionally Robust
Q-learning. In AISTATS, volume 206. PMLR, 2023.

Wang, Y. and Li, J. Improved Algorithms for Convex-
Concave Minimax Optimization. In NeurIPS, vol-
ume 33. Curran Associates, Inc., 2020.

Wang, Z., Shen, L., Fang, L., Suo, Q., Duan, T., and Gao,
M. Improving Task-free Continual Learning by Distri-
butionally Robust Memory Evolution. In ICML, volume
162. PMLR, 2022.

Williamson, R. and Menon, A. Fairness Risk Measures. In
ICML, 2019.

Xiao, L. Dual Averaging Method for Regularized Stochas-
tic Learning and Online Optimization. In NeurIPS, vol-
ume 22, 2009.

Xu, M., Huang, P., Niu, Y., Kumar, V., Qiu, J., Fang,
C., Lee, K.-H., Qi, X., Lam, H., Li, B., and Zhao, D.
Group Distributionally Robust Reinforcement Learning
with Hierarchical Latent Variables. In AISTATS, volume
206. PMLR, 2023.

Yang, J., Zhang, S., Kiyavash, N., and He, N. A Catalyst
Framework for Minimax Optimization. In NeurIPS, vol-
ume 33. Curran Associates, Inc., 2020.

Yang, Z., Guo, Y., Xu, P., Liu, A., and Anandkumar, A.
Distributionally Robust Policy Gradient for Offline Con-
textual Bandits. In AISTATS, volume 206. PMLR, 2023.

Yeh, I. Analysis of Strength of Concrete Using Design of
Experiments and Neural Networks. Journal of Materials
in Civil Engineering, 18, 2006.

Yu, Y., Lin, T., Mazumdar, E. V., and Jordan, M. Fast Dis-
tributionally Robust Learning with Variance-Reduced
Min-Max Optimization. In AISTATS. PMLR, 2022.

Appendix
In the appendices, we give summarize notation in Appx. A and provide intuition and results regarding the primal/dual
objective function in Appx. B. We describe in detail efficient implementations of the proposed algorithm in Appx. C. In
Appx. D, we describe the convergence analyses of the main algorithm. In Appx. E and Appx. F, we describe our saddle
point and Moreau-envelope-based variants, respectively. Appx. G contains technical results shared to multiple proofs. We
then describe the experimental setup in detail in Appx. H and give additional results in Appx. I.

Table of Contents
A Summary of Notation 14

B Properties of the Primal and Dual Objectives 14

C Efficient Implementation of SpecSAGA 19

D Convergence Analysis of SpecSAGA 22
D.1 Convergence Analysis for Large Shift Cost . 22

D.2 Convergence Analysis for Alternate Norms . 30

D.3 Convergence Analysis for Any Shift Cost . 31

E SaddleSAGA: Tackling the Saddle Point Problem Directly 39
E.1 Convergence proof . 40

F Improving SpecSAGA with Moreau Envelopes 46
F.1 Convergence Analysis . 47

G Technical Results from Convex Analysis 51

H Experimental Details 52
H.1 Tasks & Objectives . 52

H.2 Datasets . 53

H.3 Hyperparameter Selection . 54

H.4 Compute Environment . 54

I Additional Experiments 54

A. Summary of Notation
We summarize the notation used throughout in Tab. 1.

Symbol Description

µ ≥ 0 Standard regularization constant.

ν ≥ 0 Shift cost.

ν̄ Shorthand ν̄ = 2nν (used in the convergence proofs).

ℓ1(w), . . . , ℓn(w) Loss functions ℓi : Rd → R.

ℓ(w) Vector of losses ℓ(w) = (ℓ1(w), . . . , ℓn(w)) for w ∈ Rd.

ri(w) Regularized loss ri(w) = ℓi(w) +
µ
2 ∥w∥22.

r(w) Vector of regularized losses r(w) = (r1(w), . . . , rn(w)).

∇ℓ(w) Jacobian matrix of ℓ : Rd → Rn at w (shape = n× d).

σ The vector σ = (σ1, . . . , σn) ∈ [0, 1]n where each σ1 ≤ . . . ≤ σn and they sum to 1.

P(σ) The set {Πσ : Π ∈ [0, 1]n×n,Π1n = 1n,Π
⊤1n = 1n}, known as the permutahedron.

f Convex function f : [0,∞)→ R ∪ {+∞} generating an f -divergence.

f∗ Convex conjugate f∗(y) := supx∈R {xy − f(x)}.

Ωf or Ω
Shift penalty function Ωf : P(σ) 7→ [0,∞).

We consider f -divergence penalties Ωf (q) = Df (q∥1n/n).

Lσ Main objective Lσ(w) = maxq∈P(σ)

{
q⊤ℓ(w)− νDf (q∥1n/n)

}
+ µ

2 ∥w∥
2
2.

qopt(l)
Most unfavorable distribution for a given vector l of losses, i.e.,

qopt(l) = argmaxq∈P(σ) q
⊤l − νD(q∥1n/n).

w⋆ Optimal weights argminw∈Rd maxq∈P(σ) q
⊤l − νD(q∥1n/n) + (µ/2) ∥w∥22.

q⋆ Most unfavorable distribution of ℓ(w⋆), i.e., q⋆ = qopt(ℓ(w⋆))

G Lipschitz constant of each ℓi w.r.t. ∥·∥2.

L Lipschitz constant of each∇ℓi w.r.t. ∥·∥2.

M M = L+ µ, the Lipschitz constant of each∇ri w.r.t. ∥·∥2.

Et [·] Shorthand for E
[
· |w(t)

]
, i.e., expectation conditioned on w(t).

Table 1: Notation used throughout the paper.

B. Properties of the Primal and Dual Objectives
In this section, we state (and prove) the properties of the objectives we consider. Recall that we are interested in the
optimization problem

min
w∈Rd

[
Lσ(w) := max

q∈P(σ)
q⊤ℓ(w)− νDf (q∥1n/n) +

µ

2
∥w∥22

]
, (7)

where Df (q∥1n/n) denotes an f -divergence between the distribution given by q and the discrete uniform distribution
1n/n = (1/n, . . . , 1/n). Note that the formulation (7) is more general than that of (3) in Sec. 2, as we consider generic

f -divergences, as opposed to the χ2 divergence. The analysis techniques are broadly the same, so we derive them in the
general case and describe specific cases such as the χ2 and Kullback-Liebler (KL) divergences as examples.

Our goal for this section will be to derive properties of the function Lσ(w), or the primal objective, as well as the inner
maximization problem, which we refer to as the dual objective. Both will be useful in motivating and analyzing SpecSAGA
(used for the primal minimization) and various subroutines used to compute the maximally unfavorable distribution (i.e.,
the maximizer over q in the inner maximization).

Review of f -Divergences. Consider a strongly convex function f : [0,∞) 7→ R ∪ {+∞} such that f(1) = 0. The
f -divergence from q to p generated by this function f is given by

Df (q∥p) :=
n∑

i=1

f

(
qi
pi

)
pi,

where we define 0f (0/0) := 0 in the formula above.

The χ2-divergence is generated by fχ2(x) = x2 − 1 and the KL divergence is generated by fKL(x) = x lnx.

The Dual Problem. We describe the inner maximization first, that is

max
q∈P(σ)

{
q⊤l − νDf (q∥1n)

}
. (8)

Its properties will inform the algorithmic implementation for the minimization over w in (7). In our specific case, since we
care about the f -divergence between q and the uniform distribution 1n/n, we have

Df (q∥1n/n) :=
1

n

n∑
i=1

f (nqi) . (9)

We now derive the dual problem to Equation (8). This will lead to an algorithm to solve the optimization problem efficiently.
Throughout, we denote f∗(y) := supx∈R {xy − f(x)} as the convex conjugate of f .

Proposition 4. Let l ∈ Rn be a vector and π be a permutation that sorts its entries in non-decreasing order, i.e., ℓπ(1) ≤
. . . ≤ ℓπ(n) Then, the maximization over the permutahedron subject to the shift penalty can be expressed as

max
q∈P(σ)

{
q⊤l − νDf (q∥1n/n)

}
= min

c∈Rn

c1≤...≤cn

n∑
i=1

gi(ci; l), (10)

where we define

gi(ci ; l) := σici +
ν

n
f∗
(
lπ(i) − ci

ν

)
.

Proof. Let ιP(σ) denote the indicator function of the permutahedron P(σ), which is 0 inside P(σ) and +∞ outside of
P(σ). Its convex conjugate is the support function of the permutahedron, i.e.,

ι∗P(σ)(l) = max
q∈P(σ)

q⊤l.

For two closed convex functions h1 and h2 that are bounded from below, the convex conjugate of their sum is the infimal
convolution of their conjugate (Hiriart-Urruty & Lemaréchal, 2004, Proposition 6.3.1):

(h1 + h2)
∗(x) = inf

y
{h∗

1(y) + h∗
2(x− y)} .

In our context, taking h1(q) = ιP(σ)(q) and h2(q) = Ωf (q) = νDf (q∥1n/n), we have

sup
q∈P(σ)

{
q⊤l − Ωf (q)

}
= sup

q∈Rn

{
q⊤l − (ιP(σ)(q) + Ωf (q))

}
= (ιP(σ) +Ωf)

∗(l)

= inf
y∈Rn

{
ι∗P(σ)(y) + Ω∗

f (l − y)
}

= inf
y∈Rn

{
max

q∈P(σ)
q⊤y +Ω∗

f (l − y)

}
= inf

y∈Rn

{
n∑

i=1

σiy(i) +Ω∗
f (l − y)

}
, (11)

where y(1) ≤ . . . ≤ y(n) are the ordered values of y ∈ Rn.

Since for any x ∈ Rn, Ωf is decomposable into a sum of identical functions evaluated at the coordinates (x1, . . . , xn),
that is, Ωf (x) =

∑n
i=1 ω(xi), its convex conjugate is Ω∗

f (y) =
∑n

i=1 ω
∗(yi). In our case, ω(xi) = ν

nf(nxi) from
Equation (9), so ω∗(yi) = (ν/n)f∗(yi/ν).

Next, by convexity of ω∗, we have that if for scalars li, lj , yi, yj such that li ≤ lj and yi ≥ yj , then using Lem. 44, we have
that

ω∗(li − yi)− ω∗(lj − yj) ≥ ω∗(li − yj)− ω∗(lj − yi).

Hence for y to minimize Ω∗
f (l − y) =

∑n
i=1 ω

∗(li − yi), the coordinates of y must be ordered as l. That is, if π is an
argsort for l, s.t. lπ(1) ≤ . . . ≤ lπ(n), then yπ(1) ≤ . . . ≤ yπ(n). Since ι∗P(σ)(y) =

∑n
i=1 σiy(i) does not depend on the

ordering of y, the solution of (11) must also be ordered as l such that the dual problem (11) can be written as

inf
y∈Rn

yπ(1)≤...≤yπ(n)

n∑
i=1

σiyπ(i) +
ν

n
f∗
(
lπ(i) − yπ(i)

ν

)
= inf

y∈Rn

c1≤...≤cn

n∑
i=1

σici +
ν

n
f∗
(
lπ(i) − ci

ν

)

= min
c∈Rn

c1≤...≤cn

n∑
i=1

gi(ci; l).

Because we are interested in computing the maximizer of (8), we denote it as

qopt(l) = argmax
q∈P(σ)

{
q⊤l − νDf (q∥1n/n)

}
.

The maximizer will exist and be unique as we considered f strongly convex such that q 7→ Df (q∥1n/n) is also strongly
convex. The next result allows use to use a minimizer of (10) to compute the maximizer of (8).

Corollary 5. In the setting of Prop. 4, if

copt(l) ∈ argmin
c∈Rn

c1≤...≤cn

n∑
i=1

gi(ci; l),

then

qopt
i (l) =

1

n
[f∗]′

(
1
ν (li − copt

π−1(i)(l))
)
. (12)

The Pool Adjacent Violators (PAV) algorithm is designed exactly for the minimization (10). The algorithm is described for
the the χ2-divergence with implementation steps in Appx. C. Both the argsort π and the inverse argort π−1 are mappings

from [n] = {1, . . . , n} onto itself, but the interpretation of these indices are different for the input and output spaces [n].
The argsort π can be thought of as an index finder, in the sense that for a vector l ∈ Rn, because lπ(1) ≤ . . . ≤ lπ(n),
π(i) can be interpreted as the index of an element of l which achieves the rank i in the sorted vector. On the other hand,
π−1(i) can be thought of as a rank finder, in that π−1(i) = rank(i) is the position that li takes in the sorted form of l. To
summarize

π : [n]︸︷︷︸
ranks of losses

→ [n]︸︷︷︸
indices of training examples

while π−1 : [n]︸︷︷︸
indices of training examples

→ [n]︸︷︷︸
ranks of losses

We may equivalently write (12) as

qopt
i (l) =

1

n
[f∗]′

(
1
ν (li − copt

rank(i)(l))
)
. (13)

Finally, as seen in Appx. C, it will be helpful to compute qopt in sorted order. Because the f -divergence is agnostic to the
ordering of the q vector (as it is being compared to the uniform distribution), q can also be sorted by π. Thus, we may also
write

qopt
(i)(l) =

1

n
[f∗]′

(
1
ν (l(i) − copt

i (l))
)
. (14)

In the following, the f -divergences we consider as running examples are:

fχ2(x) = x2 − 1 and f∗
χ2(y) = y2/4 + 1 (χ2-divergence)

fKL(x) = x lnx and f∗
KL(y) = e−1 exp (y) . (KL-divergence)

The Primal Function. When divergence generator f is strongly convex and the loss function ℓ : Rd → Rn is convex and
differentiable, we have that Equation (7) is differentiable, as we show next.

Lemma 6. Let ℓ : Rd → Rn be differentiable with Jacobian w 7→ ∇ℓ(w) ∈ Rn×d. Let each ℓi : Rd → R be convex. Let
f be αn-strongly convex on the interval [0, n]. Then, the function Lσ from Equation (7) is differentiable with its gradient
equal to

∇Lσ(w) = (∇ℓ(w))⊤ qopt(ℓ(w)) + µw.

Furthermore l 7→ qopt(l) is (αnnν)
−1-Lipschitz continuous w.r.t. ∥·∥2.

Proof. First, due to the αn-strong convexity of f , for any q, ρ ∈ [0, 1]n, we may average the strong convexity inequality
evaluated at nρ, nq to write

1

n

n∑
i=1

f(nqi) ≥
1

n

n∑
i=1

f(nρi) +
1

n

n∑
i=1

f ′(nρi)(nqi − nρi) +
1

n

n∑
i=1

αn

2
(nqi − nρi)

2
.

Defining Ωf (q) := Df (q∥1n/n), the statement above can be succinctly written as

Ωf (q) ≥ Ωf (ρ) +∇Ωf (ρ)
⊤(q − ρ) +

αnn

2
∥q − ρ∥22 .

Therefore, Ωf is (αnn)-strongly convex with respect to ∥·∥2 on [0, 1]n. Next, due to the convexity of each ℓi and the
non-negativity of any q ∈ P(σ), we have that

w 7→ max
q∈P(σ)

{
q⊤ℓ(w)− νΩf (q)

}

is convex, as is its pointwise maximum (over q) of a family of convex functions q⊤ℓ(w). For any w ∈ Rd, the function

q 7→ q⊤ℓ(w)− νΩf (q)

is (ναnn)-strongly concave if f is αn-strongly convex. Thus, it admits a unique maximizer. By Danskin’s theorem (Bert-
sekas, 1997, Proposition B.25), we have that Lσ is continuously differentiable with

∇Lσ(w) = ∇ℓ(w)⊤qopt(ℓ(w)) + µw .

Moreover, by Nesterov (2005, Theorem 1), we have that l 7→ qopt(l) is Lipschitz continuous with Lipschitz constant equal
to the inverse of the strong convexity constant of νΩf , which is ναnn.

Returning to our canonical examples, we have that for the χ2, fχ2(x) = x2 − 1 is 2-strongly convex and R and that
fKL(x) = x lnx is (1/n)-strongly convex on [0, n]. Thus, the function l 7→ qopt(l) will have Lipschitz constant 2nν and ν,
respectively.

Smoothness Properties. By applying Lem. 6 to Lipschitz continuous losses, we may achieve the following guarantee
regarding the changes in qopt with respect to w.

Lemma 7. Let f be αn-strongly convex on the interval [0, n]. For any w1, . . . , wn, w
′
1, . . . , w

′
n ∈ Rd construct

ℓ̄(w1, . . . , wn) =
(
ℓi(wi)

)n
i=1
∈ Rn, as well as ℓ̄(w′

1, . . . , w
′
n) where each ℓi is G-Lipschitz w.r.t. ∥·∥2. Then, we have

∥∥qopt(ℓ̄(w1, . . . , wn))− qopt(ℓ̄(w′
1, . . . , w

′
n))
∥∥2
2
=

G2

n2α2
nν

2

n∑
i=1

∥wi − w′
i∥

2
2 .

Proof. By the Lipschitz property of qopt (Lem. 6), we have,∥∥qopt(ℓ̄(w1, . . . , wn))− qopt(ℓ̄(w′
1, . . . , w

′
n))
∥∥2
2
≤ 1

n2α2
nν

2

∥∥ℓ̄(w1, . . . , wn)− ℓ̄(w′
1, . . . , w

′
n)
∥∥2
2

≤ 1

n2α2
nν

2

n∑
i=1

(ℓi(wi)− ℓi(w
′
i))

2
2

≤ G2

n2α2
nν

2

n∑
i=1

∥wi − w′
i∥

2
2 .

As a special case of Lem. 7, we may consider w1 = · · · = wn = w ∈ Rd and w′
1 = · · · = w′

n = w′ ∈ Rd, in which case
the result reads ∥∥qopt(ℓ(w))− qopt(ℓ(w′))

∥∥2
2
=

G2

nα2
nν

2
∥w − w′∥22 .

Properties under No Shift Penalty. Next, we use the smoothness properties above to prove Prop. 3 by virtue of the
following proposition, which states the equivalence of the minimizers of “no-cost” and “low-cost” objectives.

Proposition 8. Let w⋆
ν be the unique minimizer of (3) with shift cost ν ≥ 0 and χ2-divergence penalty. Define ℓ(1)(w⋆

0) <
. . . , < ℓ(n)(w

⋆
0) to be the order statistics of ℓ1(w⋆

0), . . . , ℓn(w
⋆
0), which are assumed to be distinct. Consider ν0 such that

nν0 (σi+1 − σi) < ℓ(i+1)(w
⋆
0)− ℓ(i)(w

⋆
0) for i = 1, . . . , n. (15)

We have that w⋆
0 = w⋆

ν for all ν ≤ ν0.

Proof. For a vector l ∈ Rn and ν ≥ 0, consider

hν(l) := max
q∈P(σ)

q⊤l − νn ∥q − 1n/n∥22

= max
q∈P(σ)

q⊤ (l + 2ν1n)− νn ∥q∥22 − (ν/n) ∥1n∥22

= max
q∈P(σ)

q⊤l − νn ∥q∥22 + ν

:= gν(l) + ν,

where we used that q⊤1 = 1 for all q ∈ P(σ). For ν > 0, by Danskin’s theorem (Bertsekas, 1997, Proposition B.25),

∇hν(l) = ∇gν(l) = argmax
q∈P(σ)

q⊤l − νn ∥q∥22 .

By applying Proposition 5 of (Blondel et al., 2020), we have that if

nν0 (σi+1 − σi) < ℓ(i+1)(w
⋆
0)− ℓ(i)(w

⋆
0) for i = 1, . . . , n, (16)

for some ν0 > 0, then for any ν ≤ ν0,

∇gν(ℓ(w⋆
0)) = ∇g0(ℓ(w⋆

0)).

Denote our objective as

Lσ,ν(w) = hν(ℓ(w)) +
µ

2
∥w∥22 ,

where we explicitly show the dependence on the shift cost ν ≥ 0. For ν = 0, since the losses are differentiable and ℓ(w⋆
0)

is composed of distinct coordinates, Lσ,0 is differentiable at w⋆
0 with gradient ∇ℓ(w⋆

0)
⊤∇h0(ℓ(w

⋆
0)) + µw⋆

0 (Mehta et al.,
2023, Proposition 2), where∇ℓ(w⋆

0) ∈ Rn×d denotes the Jacobian of ℓ at w⋆
0 . Using the chain rule, we successively deduce

∇Lσ,0(w
⋆
0) = 0 ⇐⇒ ∇ℓ(w⋆

0)
⊤∇h0(ℓ(w

⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇g0(ℓ(w⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇gν(ℓ(w⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇ℓ(w⋆
0)

⊤∇hν(ℓ(w
⋆
0)) + µw⋆

0 = 0

⇐⇒ ∇Lσ,ν(w
⋆
0) = 0.

Applying the first-order optimality conditions of Lσ,0 and Lσ,ν , as well as the uniqueness of w⋆
0 completes the proof.

Prop. 3 of the main paper then follows by combining Prop. 8 above with the convergence guarantee Thm. 20 of decoupled
SpecSAGA (Algorithm 9). Indeed, Thm. 20 shows that decoupled SpecSAGA (Algorithm 9) is able to converge linearly
for arbitrarily small ν > 0 and as long as ν ≤ ν0. Under Prop. 8, the minimizer will be equal to w⋆

0 .

We interpret this phenomenon as the “hidden smoothness” of Lσ , in that the non-differentiable points of the map w 7→
maxq∈P(σ) q

⊤ℓ(w) are precisely the points at which ℓi(w) = ℓj(w) for some i ̸= j, as the subdifferential may contain
multiple elements (Mehta et al., 2023, Proposition 2). Thus, if the losses are well-separated enough (in comparison to the
spectrum σ) at the minimizer w⋆

0 , the objective for the non-smooth setting ν = 0 and regularized setting ν > 0 result in
the same minimizer.

C. Efficient Implementation of SpecSAGA
In this section, we describe how to implement SpecSAGA efficiently. A precise version of Algorithm 1 is given in Al-
gorithm 2 We index relevant quantities with the iterate number t to explicitly describe their changes at each step. As
in Algorithm 1, we maintain a table of losses l(t) ∈ Rn, gradients g(t) ∈ Rn×d, weights ρ(t) ∈ Rn, and aggregate
ḡ(t) =

∑n
i=1 ρ

(t)
i g

(t)
i used to construct the control variate. We also maintain the maximizer q(t) = qopt

(
l(t)
)

used in the

Algorithm 2 SpecSAGA: A precise version on Algorithm 1 with iteration counters specified.

Inputs: Initial points w(0), stepsize η > 0, number of iterations T
1: q(0) = argmaxq∈P(σ) q

⊤ℓ(w(0))− νDf (q∥1n/n), ρ(0) = q(0).
2: Set l(0) = (ℓi(w

(0)))ni=1 ∈ Rn, g(0) = (∇ℓi(w(0)) + µw(0))ni=1 ∈ Rd×n,
3: Compute ḡ(0) =

∑n
i=1 ρ

(0)
i g

(0)
i ∈ Rd.

4: for t = 0, . . . , T − 1 do
5: it ∼ Unif([n]).
6: v(t) = nq

(t)
it
∇rit(w(t))− (nρ

(t)
it
∇rit(z(t)it

)− ḡ(t)).
7: w(t+1) = w(t) − ηv(t). ▷ Update parameter vector.
8: l

(t+1)
it

= ℓit(w
(t+1)) and l

(t+1)
i = l

(t)
i for i ̸= it.

9: g
(t+1)
it

= ∇ℓit(w(t)) + µw(t) and g
(t+1)
i = g

(t)
i for i ̸= it.

10: ρ
(t+1)
it

= q
(t)
it

and ρ
(t+1)
i = ρ

(t)
i for i ̸= it.

11: q(t+1) = argmaxq∈P(σ) q
⊤l(t+1) − νDf (q∥1n/n). ▷ Update data distribution.

12: ḡ(t+1) = ḡ(t) + (ρ
(t+1)
it

g
(t+1)
it

− ρ
(t)
it
g
(t)
it

) =
∑n

i=1 ρ
(t+1)
i g

(t+1)
i . ▷ Update control variate.

Output: Final point w(T).

stochastic gradient estimate.

Efficient Implementation. For efficiency, we exactly solve the maximization problem

q(t) = qopt
(
l(t)
)
= argmax

q∈P(σ)

{
q⊤l(t) − (ν/n)

n∑
i=1

f(nqi)

}
. (17)

by a sequence of three steps:

• Sorting: Find π such that l(t)π(1) ≤ . . . ≤ l
(t)
π(n).

• Isotonic regression: Apply Pool Adjacent Violators (PAV) (Algorithm 4) to solve the isotonic regression minimiza-
tion problem (10), yielding solution c(t) = copt(l(t)).

• Conversion: Use (12) to convert c(t) back to q(t) = qopt(l(t)).

The sorting step runs in O(n lnn) elementary operations whereas the isotonic regression and conversion steps run in O(n)
operations. Crucially, retrieving q(t) from the output c(t) = copt(l(t)) in the third step can be done by a single O(n)-time
pass by setting

q
(t)

π(t)(i)
=

1

n
[f∗]′

(
1
ν (l

(t)

π(t)(i)
− c

(t)
i)
)

for i = 1, . . . , n, as opposed to computing the inverse π−1 and use (12) directly, which in fact requires another sorting
operation and can be avoided. Because only one element of l(t) changes on every iteration, we may sort it by simply
bubbling the value of the index that changed into its correct position to generate the sorted version of l(t+1). The full
algorithm is given Algorithm 3. We give a brief explanation on the PAV algorithm for general f -divergences below.

Pool Adjacent Violators (PAV) Algorithm. First, recall the optimization problem we wish to solve:

min
c∈Rn

c1≤...≤cn

n∑
i=1

gi(ci; l), where gi(ci; l) := σici +
ν

n
f∗
(
lπ(i) − ci

ν

)
. (18)

The objective can be thought of as fitting a real-valued monotonic function to the points (1, lπ(1)), . . . , (n, lπ(n)), which
would require specifying its values (c1, . . . , cn) on (1, . . . , n) and defining the function as any x ∈ [cj , cj+1] on (j, j +1).
Because lπ(1) ≤ . . . ≤ lπ(n), if we evaluated our function (c1, . . . , cn) on a loss such as

∑n
i=1(lπ(i) − ci)

2, we may

easily solve the problem by returning c1 = ℓπ(1), . . . , cn = lπ(n). However, by specifying functions g1, . . . , gn we allow
our loss function to change in different regions of the inputs space {1, . . . , n}. In such cases, the monotonicity constraint
c1 ≤ . . . ≤ cn is often violated because individually minimizing gi(ci) for each ci has no guarantee of yielding a function
that is monotonic.

The idea behind the PAV algorithm is to attempt a pass at minimizing each gi individually, and correcting violations as
they appear. To provide intuition, define c∗i ∈ argminci∈R gi(ci), and consider i < j such that c∗i > c∗j . If f∗ is strictly
convex, then gi(x) > gi(c

∗
i) for any x < c∗i and similarly gj(x) > gj(c

∗
j) for any x > c∗j . Thus, to correct the violation,

we decrease c∗i to c̄i and increase c∗j to c̄j until c̄i = c̄j . We determine this midpoint precisely by

c̄i = c̄j = argmin
x∈R

gi(x) + gj(x)

as these are exactly the contributions made by these terms in the overall objective. The computation above is called
pooling the indices i and j. We may generalize this viewpoint to violating chains, that is collections of contiguous indices
(i, i+ 1, . . . , i+m) such that c∗j < c∗i for all j < i and c∗j > c∗i+m for all j > i+m, but c∗i > c∗i+m. One approach is use
dynamic programming to identify such chains and then compute the pooled quantities

c̄i = argmin
x∈R

m∑
k=1

gi+k(x).

This requires two passes through the vector: one for identifying violators and the other for pooling. The Pool Adjacent
Violators algorithm, on the other hand, is able to perform both operations in one pass by greedily pooling violators as they
appear. This can be viewed as a meta-algorithm, as it hinges on the notion that the solution of “larger” pooling problems
can be easily computed from solutions of “smaller” pooling problems. Precisely, for indices S ⊆ [n] = {1, . . . , n} define

Sol(S) = argmin
x∈R

∑
i∈S

gi(x).

We rely on the existence of an operation Pool, such that for any S, T ⊆ [n] such that S ∩ T = ∅, we have that

Sol(S ∪ T) = Pool (Sol(S),m(S),Sol(T),m(T)) , (19)

where m(S) denotes “metadata” associated to S, and that the number of elementary operations in the Pool function is
O(1) with respect to |S|+ |T |. We review our running examples.

For the χ2-divergence, we have that fχ2(x) = x2 − 1 and f∗
χ2(y) = y2/4 + 1, so

Sol(S) = argmin
x∈R

{
x

(∑
i∈S

σi

)
+ |S|+ ν

4n

∑
i∈S

(lπ(i) − x)2

}

=
1

|S|

[
(2n/ν)

∑
i∈S

σi −
∑
i∈S

lπ(i)

]

Sol(S ∪ T) =
1

|S|+ |T |

[
(2n/ν)

∑
i∈S∪T

σi −
∑

i∈S∪T

lπ(i)

]

=
|S|Sol(S) + |T |Sol(T)

|S|+ |T | .

Thus, the metadata m(S) = |S| used in the pooling step eq. (19) is the size of each subset.

For the KL divergence, fKL(x) = x lnx and f∗
KL(y) = e−1 exp (y), so so

Sol(S) = argmin
x∈R

{
x

(∑
i∈S

σi

)
+

ν

ne

∑
i∈S

exp
(
lπ(i)/ν

)
exp (−x/ν)

}

= ν

[
ln
∑
i∈S

exp
(
lπ(i)/ν

)
− ln

∑
i∈S

σi − lnn− 1

]

Sol(S ∪ T) = ν

[
ln
∑

i∈S∪T

exp
(
lπ(i)/ν

)
− ln

∑
i∈S∪T

σi − lnn− 1

]

= ν

[
ln

(∑
i∈S

exp
(
lπ(i)/ν

)
+
∑
i∈T

exp
(
lπ(i)/ν

))
− ln

(∑
i∈S

σi +
∑
i∈T

σi

)
− lnn− 1

]
.

Here, we carry the metadata m(S) = (ln
∑

i∈S exp
(
lπ(i)/ν

)
, ln
∑

i∈S σi), which can easily be combined and plugged
into the function

(m1,m2), (m
′
1,m

′
2) 7→ ν [ln (expm1 + expm′

1)− ln (expm2 + expm′
2)− lnn− 1] . (20)

for two instances of metadata (m1,m2) and (m′
1,m

′
2). We carry the “logsumexp” instead of just the sum of exponential

quantities for numerical stability, and Equation (20) applies this operation as well. It might be that
∑

i∈S σi = 0, e.g. for
the superquantile. In this case, we may interpret Sol(S) = −∞ and evaluate exp (−∞) = 0 in the conversion formula
(18). Two examples of the PAV algorithm are given in Algorithm 4 and Algorithm 5, respectively. These operate by
selecting the unique values of the optimizer and partitions of indices that achieve that value.

Hardware Acceleration. Finally, note that all of the subroutines in Algorithm 3 (Algorithm 4/Algorithm 5, Algorithm 7,
and Algorithm 7) all require primitive operations such as control flow and linear scans through vectors. Because these steps
are outside of the purview of oracle calls or matrix multiplications, they benefit from just-in-time compilation on the CPU.
We accelerate these subroutines using the Numba package in Python and are able to achieve an approximate 50%-60%
decrease in runtime across benchmarks.

D. Convergence Analysis of SpecSAGA
Denote the quantity Ωf (q) = Df (q∥1n/n) for the f -divergence of the distribution q ∈ P(σ) to the uniform distribution
and define

ri(w) = ℓi(w) +
µ

2
∥w∥22, r(w) = (ri(w))

n
i=1 ∈ Rn.

Our objective of interest can be rewritten

Lσ(w) = max
q∈P(σ)

q⊤ℓ(w)− νDf (q∥1n/n) +
µ

2
∥w∥22 (21)

= max
q∈P(σ)

q⊤r(w)− νΩf (q), (22)

which we wish to minimize in w ∈ Rd. In the main text, we primarily considered f(x) := x2 − 1, generating the χ2-
divergence. We analyze Algorithm 8, which adopts similar notation to Algorithm 3 in Appx. C. That is, at iterate t we have
access to a table of losses l(t) ∈ Rn, (regularized) gradients g(t) ∈ Rn×d, control variate weights ρ(t) ∈ Rn, and aggregate
ḡ(t) =

∑n
i=1 ρ

(t)
i g

(t)
i , and maximizer q(t) = qopt

(
l(t)
)
. In addition, however, we keep track of the iterates z(t)i at which

losses and gradients are loaded into the table, so that l(t)i = ℓi(z
(t)
i) and g

(t)
i = ∇ri(z(t)i). We emphasize that these iterates

need not be stored and the presentation is made to clarify steps in the analysis.

D.1. Convergence Analysis for Large Shift Cost

Assumption 9. We consider the losses ℓ1, . . . , ℓn to each be convex, G-Lipschitz continuous, and L-smooth. Let f be
αn-strongly convex on [0, n].

Algorithm 3 SpecSAGA (Efficient)

Inputs: Initial points w(0), spectrum σ, stepsize η > 0, number of iterations T , regularization parameter µ > 0, shift
cost ν > 0, loss and gradient oracles ℓ1, . . . , ℓn and ∇ℓ1, . . . ,∇ℓn.

1: l(0) = (ℓi(w
(0)))ni=1 ∈ Rn.

2: g(0) = (∇ℓi(w(0)) + µw(0))ni=1 ∈ Rn×d.
3: π(0) = argsort(l(0)).
4: c(0) = PAV(l(0), π(0), σ). ▷ Algorithm 4 or Algorithm 5
5: q(0) = Convert(c(0), l(0), π(0), ν, c(0)). ▷ Algorithm 7
6: Define q(0) by q

(0)

π(0)(i)
= ci.

7: ρ(0) = q(0).
8: ḡ(0) =

∑n
i=1 ρ

(0)
i g

(0)
i ∈ Rd.

9: for t = 0, . . . , T − 1 do
10: Sample it ∼ Unif[n].
11: v(t) = nq

(t)
it
∇ℓit(w(t))− nρ

(t)
it
g
(t)
it
− ḡ(t).

12: w(t+1) = (1− ηµ)w(t) − ηv(t).
13: l

(t+1)
it

= ℓit(w
(t)) and l

(t+1)
i = l

(t)
i for i ̸= it.

14: g
(t+1)
it

= ∇ℓit(w(t)) + µw(t) and g
(t+1)
i = g

(t)
i for i ̸= it.

15: π(t+1) = Bubble(π(t), l(t+1)). ▷ Algorithm 6
16: ḡ(t+1) = ḡ(t) − ρ

(t)
it
git + ρ

(t+1)
it

g
(t+1)
it

.
17: c(t+1) = PAV(l(t+1), π(t+1), σ).
18: q(t+1) = Convert(c(t+1), l(t+1), π(t+1), ν, q(t)).
19: ρ

(t+1)
it

= σ
(t+1)
it

.

Output: Final point w(T).

The assumptions on losses ℓi are standard, whereas the second is satisfied by the χ2 generator with αn = 2 and the KL
generator with αn = 1/n.

Let M = L + µ be the smoothness constant of the regularized losses ri. Moreover, we write Et[·] to denote the expec-
tation conditioned on all the randomness up to iteration t (equivalently, conditioned on w(t), so that the only additional
randomness is w.r.t. it). Recall that κσ = nσn ≥ 1. Finally, define q⋆ = qopt(ℓ(w⋆)) as the value of the dual variable at
optimum.

We have the following guarantee in the large shift cost regime.

Theorem 10. Suppose the shift cost satisfies ν ≥ 12G2

µαn
Then, the sequence of iterates (w(t)) produced by SpecSAGA

Algorithm 4 Pool Adjacent Violators (PAV) Algorithm for χ2 divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].
1: Initialize partition endpoints (b0, b1) = (0, 1), partition value v1 = 2n/νσ1 − lπ(1), number of parts k = 1.
2: for i = 2, . . . , n do
3: Add part k = k + 1.
4: Compute vk+1 = 2n/νσi − lπ(i).
5: while k ≥ 2 and vk ≥ vk+1 do
6: vk = (bk−bk−1)vk+(i−bk)vd

bk−bk−1+1 .
7: Set k = k − 1.
8: bk = i.

Output: Vector c containing ci = vk for bk−1 < i ≤ bk.

Algorithm 5 Pool Adjacent Violators (PAV) Algorithm for KL divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].
1: Initialize partition endpoints (b0, b1) = (0, 1), number of parts k = 1.
2: Initialize partition value v1 = ν

(
lπ(1)/ν − lnσ1 − lnn− 1

)
.

3: Initialize metadata m1 = ℓπ(1)/ν and t1 = lnσ1.
4: for i = 2, . . . , n do
5: Add part k = k + 1.
6: Compute vk+1 = ν

(
lπ(i)/ν − lnσi − lnn− 1

)
.

7: Compute mk+1 = ℓπ(i)/ν) and tk+1 = lnσi

8: while k ≥ 2 and vk ≥ vk+1 do
9: mk = logsumexp(mk,mk+1) and tk = logsumexp(tk, tk+1).

10: vk = ν (mk − tk − lnn− 1).
11: Set k = k − 1.
12: bk = i.

Output: Vector c containing ci = vk for bk−1 < i ≤ bk.

Algorithm 6 Bubble

Require: Index jinit, sorting permutation π, loss table l.
1: j = jinit. ▷ If lπ(jinit) too small, bubble left.
2: while j > 1 and lπ(j) < lπ(j−1) do
3: Swap π(j) and π(j − 1).
4: j = jinit. ▷ If lπ(jinit) too large, bubble right.
5: while j < n and lπ(j) > lπ(j+1) do
6: Swap π(j) and π(j + 1).
7: return π

(Algorithm 8) with learning rate η = (6M(1 + κ−1)κσ)
−1, κσ = nσn, κ = M/µ, satisfies

E
∥∥∥w(t) − w⋆

∥∥∥2
2
≤ exp(−t/τ) (n2 ∥σ∥22 + n)

∥∥∥w(0) − w⋆
∥∥∥2
2
,

where we have defined
τ = max

{
2n, 12κσ(κ+ 1)2/κ

}
.

The smoothness condition can be tightened to

ν ≥ 2G(1 + κ)

Mαn

√
∥∇ℓ(w⋆)∥22

n
+

8G2

κσ(1 + κ)
,

as we demonstrate in Prop. 15. Here, ∥∇ℓ(w⋆)∥22 is the squared spectral norm of the Jacobian of ℓ at w⋆. We proceed in
several steps to complete the proof.

Evolution of Iterates. By expanding out the updates, we have,

Et∥w(t+1) − w⋆∥2 ≤ ∥w(t) − w⋆∥22 − 2η

〈
n∑

i=1

q
(t)
i ∇ri(w(t)), w(t) − w⋆

〉
+ η2Et

[
∥v(t)∥22

]
. (23)

We analyze each of the two terms in turn.

Analysis of the 1st Order Term. We first analyze the first-order term with a particular focus on the bias. This is achieved
in Lem. 13.

We first give two the helper lemmas.

Algorithm 7 Convert

Require: Sorted vector c ∈ R, vector l ∈ Rn, argsort π of l, shift cost ν ≥ 0, vector q ∈ Rn.
1: for i = 1, . . . , n do
2: Set qπ(i) = (1/n)[f∗]′

(
(lπ(i) − ci)/ν

)
.

3: return q.

Algorithm 8 SpecSAGA: Verbose

Inputs: Initial points w(0), stepsize η > 0, number of iterations T
1: Set z(0)i = w(0) for all i ∈ [n], q(0) = argmaxq∈P(σ) q

⊤ℓ(w(0))− νDf (q∥1n/n), ρ(0) = q(0).

2: Set l(0) = (ℓi(z
(0)
i))ni=1 ∈ Rn, g(0) = (∇ri(z(0)i))ni=1 ∈ Rd×n, ḡ(0) =

∑n
i=1 ρ

(0)
i g

(0)
i ∈ Rd.

3: for t = 0, . . . , T − 1 do
4: it ∼ Unif([n]).
5: z

(t+1)
it

= w(t) and z
(t+1)
i = z

(t)
i for i ̸= it.

6: ρ
(t+1)
it

= q
(t)
it

and ρ
(t+1)
i = ρ

(t)
i for i ̸= it.

7: v(t) = nq
(t)
it
∇rit(w(t))− (nρ

(t)
it
∇rit(z(t)it

)− ḡ(t)).
8: w(t+1) = w(t) − ηv(t).
9: l(t+1) = ℓ(z(t+1)) .

10: q(t+1) = argmaxq∈P(σ) q
⊤l(t+1) − νDf (q∥1n/n).

11: g(t+1) = (∇ri(z(t+1)))ni=1

12: ḡ(t+1) = ḡ(t) + (ρ
(t+1)
it

g
(t+1)
it

− ρ
(t)
it
g
(t)
it

) =
∑n

i=1 ρ
(t+1)
i g

(t+1)
i .

Output: Final point w(T).

Lemma 11. For any q ∈ P(σ) and w, v ∈ Rd, we have for ri that is M -smooth and µ-strongly convex, we have

(∇(q⊤r)(w)−∇(q⊤r)(v))⊤(w − v) ≥ µM

µ+M
∥w − v∥22

+
1

(M + µ)σn

n∑
i=1

∥qi∇ri(w)− qi∇ri(v)∥22.

Proof. Consider i ∈ [n] with qi ̸= 0, we have since qiri is qiM -smooth and qiµ strongly convex, we have by Thm. 40 that

(qi∇ri(w)− qi∇ri(v))⊤(w − v) ≥ qiµM

µ+M
∥w − v∥22 +

1

(M + µ)qi
∥qi∇ri(w)− qi∇ri(v)∥22

≥ qiµM

µ+M
∥w − v∥22 +

1

(M + µ)σn
∥qi∇ri(w)− qi∇ri(v)∥22.

The last inequality holds naturally for qi = 0. Summing the above and using that q⊤1 = 1 since q ∈ P(σ) gives the
result.

Lemma 12. Consider the setting of Algorithm 8. We have,

1

n

n∑
i=1

∥∥∥n(q(t)i − q∗i)∇ri(w⋆)
∥∥∥2
2
≤ 4nG2

∥∥∥q(t)i − q∗i

∥∥∥2
2
.

Proof. Since ∇ri(w⋆) = ∇ℓi(w⋆) + µw⋆, we have ∥ri(w⋆)∥22 ≤ 2G2 + 2 ∥µw⋆∥22. Further, since
∑n

i=1 q
⋆
i∇ri(w⋆) =

0, we have that µw⋆ = −∑n
i=1 q

∗
i∇ℓi(w⋆). Since ∥∇ℓi(w⋆)∥2 ≤ G, we have that ∥µw⋆∥2 ≤ G, as it is a convex

combination of vectors bounded by G. Therefore, we get,

∥n(q(t)i − q∗i)∇ri(w⋆)∥22 ≤ 2n2(q
(t)
i − q∗i)

2(G2 + ∥µw⋆∥22)
≤ 4n2G2(q

(t)
i − q∗i)

2 .

The following gives the bound on the first-order descent term. Define γ∗ = ∥∇ℓ(w⋆)∥2 to be the spectral norm of the
Jacobian of ℓ at w⋆.

Lemma 13. Consider the setting of Algorithm 8. For any a > 0, we have,

−2∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) ≤− 2µM

µ+M
∥w(t) − w⋆∥22

− 1

(µ+M)κσ
Et

[
∥nq(t)it

∇ri(w(t))− nq∗it∇rit(w⋆)∥22
]

+ a−1∥w(t) − w⋆∥22

+

(
aγ2

∗ +
8nG2

(µ+M)κσ

)
G2

n2α2
nν

2

n∑
i=1

∥z(t)i − w⋆∥22.

Proof. We have using Lem. 11

−∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) ≤ − µM

µ+M
∥w(t) − w⋆∥22 (24)

− 1

(µ+M)nσn
Et

[
∥nq(t)i ∇ri(w(t))− nq

(t)
i ∇ri(w⋆)∥22

]
−∇(q(t)⊤r)(w⋆)⊤(w(t) − w⋆).

Using ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22, the second term in (24) can be bounded as

− 1

n

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq
(t)
i ∇ri(w⋆)∥22

≤ − 1

2n

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq∗i∇ri(w⋆)∥22 +
1

n

n∑
i=1

∥n(q(t)i − q∗i)∇ri(w⋆)∥22

≤ − 1

2n

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq∗i∇ri(w⋆)∥22 + 4nG2
∥∥∥q(t) − q⋆

∥∥∥2
2
, (25)

where the final inequality follows from Lem. 12. The last term in (24) is a bias term that is zero in the case that σ = 1n/n.
It can be bounded as

∇(q(t)⊤r)(w⋆)⊤(w(t) − w⋆) = (∇(q(t)⊤r)(w⋆)−∇(q⋆⊤r)(w⋆))⊤(w(t) − w⋆)

= (∇(q(t)⊤ℓ)(w⋆)−∇(q⋆⊤ℓ)(w⋆))⊤(w(t) − w⋆)

≤ a

2
∥∇ℓ(w⋆)⊤(q(t) − q⋆)∥22 +

1

2a
∥w(t) − w⋆∥22

≤ aγ2
∗

2
∥q(t) − q⋆∥22 +

1

2a
∥w(t) − w⋆∥22,

where we used Young’s inequality, 2x⊤y ≤ a∥x∥22 + a−1∥y∥22 for the first inequality, and γ2
∗ is the largest singular value

of ∇ℓ(w⋆) ∈ Rn×d. Putting these together, we get

−∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) ≤− µM

µ+M
∥w(t) − w⋆∥22

− 1

2(µ+M)κσ
Et

[
∥nq(t)it

∇ri(w(t))− nq∗it∇ri(w⋆)∥22
]

+
1

2a
∥w(t) − w⋆∥22

+

(
aγ2

∗
2

+
4nG2

(µ+M)κσ

)
∥q(t) − q⋆∥22.

Now, applying Lem. 6, the result follows from

∥q(t) − q⋆∥22 ≤
1

n2α2
nν

2
∥l(t) − ℓ(w⋆)∥22 ≤

G2

n2α2
nν

2

n∑
i=1

∥z(t)i − w⋆∥22. (26)

Analysis of the 2nd Order Term.

Lemma 14. Consider the notations of Alg. 8, we have for any β > 0,

Et∥v(t)∥22 ≤ (1 + β)Et∥nq(t)it
∇rit(w(t))− nq∗it∇rit(w⋆)∥22

+ (1 + β−1)Et∥nρ(t)it
∇rit(z(t)it

)− nq∗it∇rit(w⋆)∥22.

Proof. In the following, we use the identity E∥X − E[X]∥22 = E∥X∥22 − ∥E[X]∥22 in equations denoted with (⋆). We
denote by β an arbitrary positive number stemming from using Young’s inequality ∥a+b∥22 ≤ (1+β)∥a∥22+(1+β−1)∥b∥22
in equation (◦). Noting that

∑n
i=1 q

⋆
i∇ri(w⋆) = 0, we get,

Et

[
∥v(t) −∇(q∗⊤r)(w⋆)∥22

]
= Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇rit(w⋆)

+ nq∗it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(⋆)
= ∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇rit(w⋆)− (∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆))

+ nq∗it∇rit(w⋆)− nρ
(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(◦)
≤ ∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ (1 + β)Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇rit(w⋆)− (∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆))∥22
]

+ (1 + β−1)Et

[
∥nq∗it∇rit(w⋆)− nρ

(t)
it
∇rit(z(t)it

)− (∇(q⋆⊤r)(w⋆)− ḡ(t))∥22
]

(⋆)
= −β∥∇(q(t)⊤r)(w(t))−∇(q⋆⊤r)(w⋆)∥22
+ (1 + β)Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇rit(w⋆)∥22
]

+ (1 + β−1)Et

[
[∥nq∗it∇rit(w⋆)− nρ

(t)
it
∇rit(z(t)it

)∥22
]

− (1 + β−1)∥∇(q⋆⊤r)(w⋆)− ḡ(t)∥22.

Lyapunov Function. We use the Lyapunov function

V (t) = ∥w(t) − w⋆∥22 + c1T
(t) + c2S

(t), (27)

where c1, c2 are two constants to be defined later, and

T (t) =
1

n

n∑
i=1

∥nρ(t)i ∇ri(z
(t)
i)− nq∗i∇ri(w⋆)∥22, S(t) =

n∑
i=1

∥z(t)i − w⋆∥22 .

One-step update. The effect of one step of the algorithm is as follows.

Proposition 15. Consider the setting of Thm. 10, that is, ν ≥ 12G2

µαn
, η = (6M(1 + κ−1)κσ)

−1. For c1 = 3nη2, c2 =

(12(κ−1 + 1)κσ(κ+ 1))−1, we have

Et

[
V (t+1)

]
≤ (1− τ−1)V (t) .

Proof. The last two terms of the Lyapunov function are easy to handle since

Et

[
T (t+1)

]
=

1

n2

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq∗i∇ri(w⋆)∥22 +
(
1− 1

n

)
T (t)

Et

[
S(t+1)

]
= ∥w(t) − w⋆∥22 +

(
1− 1

n

)
S(t).

The evolution of the first term (23) of the Lyapunov function is given Lem. 13 and Lem. 14 (where we take β = 2).
Plugging these in, we get for any τ > 1,

Et

[
V (t+1)

]
− (1− τ−1)V (t) ≤K1∥w(t) − w⋆∥22

+K2Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇rit(w⋆)∥22
]

+K3c1T
(t)

+K4c2S
(t),

with constants

K1 =
1

τ
− 2ηµM

µ+M
+ c2 + ηa−1 ,

K2 = − η

(µ+M)κσ
+ 3η2 +

c1
n

,

K3 =
3η2

2c1
+

1

τ
− 1

n
,

K4 =

(
aγ2

∗ +
8nG2

(µ+M)κσ

)
ηG2

c2n2α2
nν

2
+

1

τ
− 1

n
.

Our goal is to set the various free parameters so that all the coefficients K1, . . . ,K4 ≤ 0. We enforce τ ≥ 2n throughout.
By setting

η =
1

6(µ+M)κσ
, and c1 =

nη

2(µ+M)κσ
,

we have K2 ≤ 0,K3 ≤ 0. By also requiring τ ≥ 12(κ−1 + 1)κσ(κ+ 1) and setting

a−1 =
µM

µ+M
, and c2 =

1

12(κ−1 + 1)κσ(κ+ 1)
,

we have K1 ≤ 0, as (µM)/(µ+M)2 = (κ−1 + 1)−1(κ+ 1)−1. Turning to K4 next, we get

K4 =

[
1 + κ

M
γ2
∗ +

8nG2

M(1 + κ−1κσ

]
2G2(1 + κ)

n2α2
nν

2M
+

1

τ
− 1

n

≤ 2G2(1 + κ)

M2n2α2
nν

2

[
(1 + κ)γ2

∗ +
8nG2

κσ

]
+

1

τ
− 1

n

≤ 2G2(1 + κ)

M2n2α2
nν

2

[
(1 + κ)γ2

∗ +
8nG2

κσ

]
− 1

2n
,

which recovers the condition

ν ≥ 2G(1 + κ)

Mαn

√
γ2
∗
n

+
8G2

κσ(1 + κ)
,

to achieve K4 ≤ 0, which is satisfied when ν ≥ 12G2/(µαn), completing the proof.

By loosening the condition on ν to

ν ≥ 6G2(1 + κ)

Mαn
,

by using that κ ≥ 1, κσ ≥ 1, and γ∗ ≤
√
nG, we get a simpler dependence on the problem parameters.

Next, we have a condition on the initial value of the Lyapunov function.

Proposition 16. Consider the setting of Prop. 15. We have

V (0) ≤ (1 + 2n+ 2n2)
∥∥∥w(0) − w⋆

∥∥∥2
2
.

Proof. We use c2 ≤ 1 to bound c2S
(0) ≤ n

∥∥w(0) − w⋆
∥∥2
2
. For the second term, we have

T (0) ≤ 2

n

n∑
i=1

∥∥∥nq(0)i (∇ri(w(0))−∇ri(w⋆))
∥∥∥2
2
+

2

n

n∑
i=1

∥∥∥n(q(0)i − q∗i)∇ri(w⋆)
∥∥∥2
2

≤ 2n

n∑
i=1

(q
(0)
i)2M2

∥∥∥w(0) − w⋆
∥∥∥2
2
+ 8nG2

∥∥∥q(0) − q⋆
∥∥∥2
2

≤ 2nM2
∥∥∥w(0) − w⋆

∥∥∥2
2
+

8G4

α2
nν

2

∥∥∥w(0) − w⋆
∥∥∥2
2
.

The first inequality above comes from ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22. The second inequality comes from using the M -
Lipschitz property of each ∇ri and Lem. 12. The third inequality comes from

∑
i(qi)

2 ≤ ∑
i qi = 1 and for any

q ∈ P(σ), and the (nαnν)
−1-Lipschitz property of l 7→ qopt(l) (cf. (26)). Because c1 = n/(12(µ+M)2κσ), we have that

for the first term,

c12nM
2 =

n2

6(1 + κ−1)2κ2
σ

≤ 2n2.

and for the second term

8c1G
4

α2
nν

2
=

2nG4

3α2
nν

2(µ+M)2κ2
σ

≤ 2G4

3α2
nν

2M2σn
≤ 1

54(1 + κ)2σn
≤ n.

where we used ν ≥ 12G2/(µαn) ≥ 6G2(1 + κ)/(Mαn) under the shift cost assumption. Finally, we have that

c1T
(0) ≤ (1 + n+ 2n2)

∥∥∥w(0) − w⋆
∥∥∥2
2
.

Completing the Proof. We are now ready to complete the proof of Thm. 10.

Proof of Thm. 10. Let us choose c1, c2 as in Prop. 15. By using (a) Prop. 15, (b) 1 − x ≤ exp(−x), and (c) Prop. 16, we
get

E
∥∥∥w(t) − w⋆

∥∥∥2
2
≤ E[V (t)]

(a)

≤ (1− τ−1)t V (0)
(b)

≤ exp(−t/τ)V (0)

(c)

≤ exp(−t/τ)(1 + 2n+ 2n2)
∥∥∥w(0) − w⋆

∥∥∥2
2
.

D.2. Convergence Analysis for Alternate Norms

In this section, we provide details regarding an alternate analysis of Algorithm 8. In the previous section, we assume that
the generator f is αn-strongly convex on [0, n], for which we do not need to specify a norm because f is a function on
R. Given this, we observe in Lem. 6 that q 7→ Df (q∥1n/n) is strongly convex with respect to the ℓ2-norm with constant
nα. However, we may also place the strong convexity condition directly on q 7→ Df (q∥1n/n) for which other norms may
be suitable for analysis. For example, when f = fKL, we have that Df (·∥1n/n) is 1-strongly convex with respect to the
ℓ1-norm. This section explore the effect of alternate norms on the convergence guarantee.

Notation. We define the constant

γ⋆,p := ∥∇ℓ(w⋆)∥2,p := max
{
ρ⊤∇ℓ(w⋆)w : ∥w∥2 = 1, ∥ρ∥p = 1

}
. (28)

Note that this implies for all x ∈ Rn that ∥∥∇ℓ(w⋆)⊤x
∥∥2
2
≤ ∥∇ℓ(w⋆)∥22,p ∥x∥

2
p . (29)

Theorem 17. Suppose the f -divergence q 7→ Df (q ∥1n/n) is α-strongly convex w.r.t. the Lp norm ∥·∥p for some p ∈ [1, 2].
Suppose the shift cost satisfies

ν ≥ 2
√
nG

αµ

(
(1 + κ−1)γ⋆,p +G

√
8n

κκσ

)
.

Then, the sequence of iterates (w(t)) produced by SpecSAGA (Algorithm 8) with learning rate η = (6M(1 + κ−1)κσ)
−1

satisfies

E
∥∥∥w(t) − w⋆

∥∥∥2
2
≤ exp(−t/τ) (1 + n+ 3n2)

∥∥∥w(0) − w⋆
∥∥∥2
2
,

where we have defined
τ = max

{
2n, 12(κ−1 + 1)κσ(κ+ 1)

}
.

The proof of this result proceeds similarly to that Thm. 10. We highlight the key differences.

First-order term.

Lemma 18 (Counterpart of Lem. 13). Consider the setting of Algorithm 8. For any a > 0, we have,

−2∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) ≤− 2µM

µ+M
∥w(t) − w⋆∥22

− 1

(µ+M)κσ
Et

[
∥nq(t)it

∇rit(w(t))− nq∗it∇ri(w⋆)∥22
]

+ a−1∥w(t) − w⋆∥22

+

(
aγ2

⋆,p +
8nG2

(µ+M)κσ

)
nG2

α2ν2

n∑
i=1

∥z(t)i − w⋆∥22.

Proof. The proof proceeds similarly to Lem. 13, starting with (24). The last term in (24) can be bounded as

∇(q(t)⊤r)(w⋆)⊤(w(t) − w⋆) ≤ a

2
∥∇ℓ(w⋆)⊤(q(t) − q∗)∥22 +

1

2a
∥w(t) − w⋆∥22

≤ aγ2
⋆,p

2
∥q(t) − q∗∥2p +

1

2a
∥w(t) − w⋆∥22,

where we used (29) in the last inequality.

For the 2nd term in (24), we start with (25) and further use ∥x∥2 ≤ ∥x∥p for p ∈ [1, 2] to get

− 1

n

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq
(t)
i ∇ri(w⋆)∥22

≤ − 1

2n

n∑
i=1

∥nq(t)i ∇ri(w(t))− nq∗i∇ri(w⋆)∥22 + 4nG2
∥∥∥q(t)i − q∗i

∥∥∥2
p
.

Putting these together and invoking Lem. 7 instead of (26) completes the proof.

One-step update. The effect of one step of the algorithm is as follows.

Proposition 19 (Counterpart of Prop. 15). Consider the setting of Thm. 17. For c1 = 3nη2, c2 = (12(κ−1 + 1)κσ(κ +
1))−1, we have

Et

[
V (t+1)

]
≤ (1− τ−1)V (t) .

Proof. The proof is identical to that of Prop. 15, except that we have

K4 =

(
aγ2

⋆,p +
8nG2

(µ+M)κσ

)
ηG4

c2α2ν2
+

1

τ
− 1

n
.

Together with the other parameter choices, we have K4 ≤ 0 as long as

ν2 ≥ 4nG2

α2µ2

(
(1 + κ−1)2γ2

⋆,p +
8nG2

κκσ

)
.

The claimed condition on ν is sufficient to ensure that this is the case given the subadditivity of the square root.

D.3. Convergence Analysis for Any Shift Cost

We consider in this section a slight variation of Alg. 1 with decoupled samplings of the losses and the gradients presented
in Alg. 9. A detailed version in which we keep track of the variables z

(t)
i , ζ(t)i at which gradients and losses are taken

respectively is presented in Alg. 10.

For simplicity, we use the shorthand
ν̄ = 2nν.

Algorithm 9 Decoupled SpecSAGA

Inputs: Initial points w(0), stepsize η > 0, number of iterations T
1: Set l(0) = (ℓi(w

(0)))ni=1 ∈ Rn, g(0) = (∇ri(w(0)))ni=1 ∈ Rd×n, ḡ(0) =
∑n

i=1 ρ
(0)
i g

(0)
i ∈ Rd

2: Initialize q(0) = argmaxq∈P(σ) q
⊤l(0) − ν̄

2∥q − 1n/n∥22, ρ(0) = q(0)

3: for t = 0, . . . , T − 1 do
4: it ∼ Unif([n]), jt ∼ Unif([n])

5: v(t) = nq
(t)
it
∇rit(w(t))− (nρ

(t)
it
git − ḡ(t))

6: w(t+1) = w(t) − ηv(t)

7: l
(t+1)
jt

= ℓjt(w
(t)) and l

(t+1)
j = l

(t)
j for j ̸= jt.

8: q(t+1) = argmaxq∈P(σ) q
⊤l(t+1) − ν̄

2∥q − 1n/n∥22
9: ρ

(t+1)
it

= q
(t)
it

and ρ
(t+1)
i = ρ

(t)
i for i ̸= it

10: g
(t+1)
it

= ∇rit(w(t)) and g
(t+1)
i = g

(t)
i for i ̸= it

11: ḡ(t+1) = ḡ(t) + (q
(t)
it
∇rit(w(t))− ρ

(t)
it
g
(t)
it

)

Output: Final point w(T)

Algorithm 10 Decoupled SpecSAGA: Detailed Version for the Proof

Inputs: Initial points w(0), stepsize η > 0, number of iterations T
1: Set z(0)i = ζ

(0)
i = w(0) for all i ∈ [n], q(0) = argmaxq∈P(σ) q

⊤ℓ(w(0))− ν̄
2∥q − 1n/n∥22, ρ(0) = q(0)

2: Set l(0) = (ℓi(ζ
(0)
i))ni=1 ∈ Rn, g(0) = (∇ri(z(0)i))ni=1 ∈ Rd×n, ḡ(0) =

∑n
i=1 ρ

(0)
i g

(0)
i ∈ Rd

3: for t = 0, . . . , T − 1 do
4: it ∼ Unif([n]), jt ∼ Unif([n])

5: z
(t+1)
it

= w(t) and z
(t+1)
i = z

(t)
i for i ̸= it

6: ζ
(t+1)
jt

= w(t) and ζ
(t+1)
j = ζ

(t)
j for j ̸= jt

7: ρ
(t+1)
it

= q
(t)
it

and ρ
(t+1)
i = ρ

(t)
i for i ̸= it

8: v(t) = nq
(t)
it
∇rit(w(t))− (nρ

(t)
it
∇rit(z(t)it

)− ḡ(t))

9: w(t+1) = w(t) − ηv(t)

10: l(t+1) = ℓ(ζ(t+1))
11: q(t+1) = argmaxq∈P(σ) q

⊤l(t+1) − ν̄
2∥q − 1n/n∥22

12: g(t+1) = (∇ri(z(t+1)))ni=1

13: ḡ(t+1) =
∑n

i=1 ρ
(t+1)
i g

(t+1)
i

Output: Final point w(T)

Convergence Statement. The convergence of Alg. 9 is presented in Thm. 20

Theorem 20. Denote κ1 = 1 + L/µ, κ2 = G2n/(ν̄µ), κ3 = κσ(κ1 + 1) + 8κ2, κσ = nσmax. Then, the sequence (w(t))

produced by Alg. 9 with a learning rate η ≤ max
{
24µκ3, 4(1 + 4nκ2)κ2µmax{8κ2

1, 2κ2}
}−1

converges linearly to the
w⋆ at a rate τ = max{n, µη}.

Convergence Proof. Recall that our problem is, for µ, ν̄ > 0, ℓ(w) = (ℓi(w))
n
i=1

min
w∈Rd

max
q∈P(σ)

q⊤ℓ(w) +
µ

2
∥w∥22 −

ν̄

2
∥q − 1n/n∥22. (30)

where P(σ) ⊆ ∆n = {p ∈ Rn : p ≥ 0, p⊤1 = 1} with ∥q∥∞ ≤ σmax for all q ∈ P(σ) and σmax ≥ 1/n. Denote
ri(w) = ℓi(w) +

µ
2 ∥w∥22, r(w) = (ri(w))

n
i=1 ∈ Rn. Throughout the analysis we consider ℓi to be G-Lipschitz continuous

and L-smooth.

In the following, we denote M = L+µ the smoothness constant of the regularized losses ri. We denote Et the expectation
w.r.t to the randomness induced by picking it, jt given w(t), i.e. the conditional expectation given the σ-algebra generated

by w(t). The optimum of (30) is denoted w⋆ and satisfies

∇(q⋆⊤r(w⋆)) = 0, for q⋆ = argmax
q∈P(σ)

q⊤ℓ(w⋆)− ν̄

2
∥q − 1n/n∥22. (31)

Evolution of the distance to the optimum. We start by analyzing the evolution of the distance to the solution given
in Cor. 22 as a corollary of Lem. 21. Compared to the proof for large smoothing we use a cross-product term defined by the
differences of weighted losses, that is, we have a term (q − q⋆)⊤(ℓ(w) − ℓ(w⋆)) that replaces the previous cross-product
term.

Lemma 21. Consider w⋆ ∈ Rd the optimum of (30) satisfying (31) with associated q⋆ ∈ P(σ). For any w ∈ Rd, l ∈ Rn,
denoting q = argmaxp∈P(σ) p

⊤l − ν̄
2∥p− 1/n∥22, we have for any β1 ∈ [0, 1],

(q − q⋆)⊤(ℓ(w)− ℓ(w⋆))− (∇(q⊤r)(w)−∇(q⋆⊤r)(w⋆))⊤(w − w⋆)

≤ −µ

2
∥w − w⋆∥22 −

β1

4(M + µ)σmax

n∑
i=1

∥qi∇ri(w)− q∗i∇ri(w⋆)∥22

+
2β1G

2

ν̄(M + µ)σmax
(q − q⋆)⊤(l − ℓ(w⋆)).

Proof. From Lem. 27 we have that for any β1 ∈ [0, 1],

(q − q⋆)⊤(r(w)− r(w⋆))− (∇(q⊤r)(w)−∇(q⋆⊤r)(w⋆))⊤(w − w⋆)

≤ −µ

2
∥w − w⋆∥22

− β1

2(M + µ)σmax

(
n∑

i=1

∥q∗i∇ri(w)− q∗i∇ri(w⋆)∥22 +
n∑

i=1

∥qi∇ri(w)− qi∇ri(w⋆)∥22

)
.

We have that

∥qi∇ri(w)− q∗i∇ri(w⋆)∥22 ≤ 2∥qi∇ri(w)− qi∇ri(w⋆)∥22 + 2(qi − q∗i)
2∥∇ri(w⋆)∥22,

which is equivalent to

−∥qi∇ri(w)− qi∇ri(w⋆)∥22 ≤ −
1

2
∥qi∇ri(w)− q∗i∇ri(w⋆)∥22 + (qi − q∗i)

2∥∇ri(w⋆)∥22.

We have that ∇ri(w⋆) = ∇ℓi(w⋆) + µw⋆. Moreover, since ∇(q⋆⊤r)(w⋆) = 0, we have µw⋆ = −∑n
i=1 q

∗
i∇ℓi(w⋆).

Hence, by Jensen’s inequality using that q⋆ ∈ ∆n, we have ∥µw⋆∥2 ≤
∑n

i=1 q
∗
i ∥∇ℓi(w⋆)∥2 ≤ G since ℓi is G-Lipschitz-

continuous. We have then that ∥∇ri(w⋆)∥ ≤ 2G and so

(q − q⋆)⊤(r(w)− r(w⋆))− (∇(q⊤r)(w)−∇(q⋆⊤r)(w⋆))⊤(w − w⋆)

≤ −µ

2
∥w − w⋆∥22

− β1

4(M + µ)σmax

n∑
i=1

∥qi∇ri(w)− q∗i∇ri(w⋆)∥22 +
2β1G

2

(M + µ)σmax
∥q − q⋆∥22.

Since q, q⋆ ∈ ∆n, we have

(q − q⋆)⊤(r(w)− r(w⋆)) = (q − q⋆)⊤
(
ℓ(w)− ℓ(w⋆) +

(µ
2
∥w∥22 −

µ

2
∥w⋆∥22

)
1n

)
= (q − q⋆)⊤(ℓ(w)− ℓ(w⋆)).

With the notations of Lem. 45, we have that q = ∇h(l) and q⋆ = ∇h(ℓ(w⋆)). Hence, by Lem. 45, we have

∥q − q⋆∥22 ≤
1

ν̄
(q − q⋆)⊤(l − ℓ(w⋆)).

The result follows.

Corollary 22. Consider the setting of Alg. 10, we have for any β1 ∈ [0, 1], β2 > 0, denoting κσ = nσmax and l∗ = ℓ(w⋆),

Et

[
∥w(t+1) − w⋆∥2

]
≤ (1− ηµ)∥w(t) − w⋆∥22 − 2η(q(t) − q⋆)(ℓ(w(t))− l∗)

− η

(
β1

2(M + µ)κσ
− η(1 + β2)

)
Et

[
∥nq(t)i ∇ri(w(t))− nq∗i∇ri(w⋆)∥22

]
+

4ηβ1G
2n

ν̄(M + µ)κσ
(q(t) − q⋆)⊤(l(t) − l∗)

+ η2(1 + β−1
2)Et

[
∥nρ(t)it

∇rit(z(t)it
)− nq∗it∇rit(w⋆)∥22

]
Proof. We have

Et

[
∥w(t+1) − w⋆∥2

]
≤ ∥w(t) − w⋆∥22 − 2η∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) + η2Et

[
∥v(t)∥22

]
.

We have using that the optimality conditions (31) of w⋆ and Lem. 21 that for any β1 ∈ [0, 1],

−2η∇(q(t)⊤r)(w(t))⊤(w(t) − w⋆) = −2η(∇(q(t)⊤r)(w(t))−∇q⋆⊤r(w⋆))⊤(w(t) − w⋆)

≤ −2η(q(t) − q⋆)(ℓ(w(t))− ℓ(w⋆))− ηµ∥w(t) − w⋆∥22

− ηβ1

2(M + µ)σmax

n∑
i=1

∥q(t)i ∇ri(w(t))− q∗i∇ri(w⋆)∥22

+
4ηβ1G

2

ν̄(M + µ)σmax
(q(t) − q⋆)⊤(l(t) − ℓ(w⋆)).

Combined with Lem. 14, we get the claim.

Evolution of weighted losses. To incorporate the term (q − q⋆)⊤(ℓ(w) − ℓ(w⋆)) that appeared in the evolution of the
distances, we consider analyzing the term (q(t)−q⋆)⊤(l(t)−l∗) which, in expectation, partly incorporates (q−q⋆)⊤(ℓ(w)−
ℓ(w⋆)) while introducing some additional terms from Ejt

[
(q(t+1) − q(t))⊤(l(t+1) − l∗)

]
that are further bounded by the

distance of the current iterate to the solution or the checkpoints in the tables.

Lemma 23. Consider the setting of Alg. 10. Consider

R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l∗) ≥ 0

for l∗ = ℓ(w⋆). We have that

Et

[
R(t+1)

]
≤ 2η(q(t) − q⋆)⊤(ℓ(w(t))− l∗) +

(
1− 1

n

)
R(t) + Ejt

[
(q(t+1) − q(t))⊤(l(t+1) − l∗)

]
≤ 2η(q(t) − q⋆)(ℓ(w(t))− l∗) +

(
1− 1

n

)
R(t)

+
2ηG2n

ν̄
(1 + β3)

1

n

n∑
j=1

∥w(t) − ζ
(t)
j ∥22 +

ηG2n

2ν̄
β−1
3

n∑
j=1

∥ζ(t)j − w⋆∥22.

Proof. The fact that R(t) is non-negative is a consequence of Lem. 45 using that q(t) = ∇h(l(t)), q⋆ = ∇h(ℓ(w⋆)) for h

defined in Lem. 45. We have for any β3 > 0

(q(t+1) − q⋆)⊤(l(t) − l∗) = (q(t) − q⋆)⊤(l(t+1) − l∗) + (q(t+1) − q(t))⊤(l(t+1) − l(t))

+ (q(t+1) − q(t))⊤(l(t) − l∗).

With the notations of Lem. 45, we have q(t) = ∇h(l(t)) and so

(q(t+1) − q(t))⊤(l(t+1) − l(t)) ≤ 1

ν̄
∥l(t+1) − l(t)∥22.

Next, using Young’s inequality, that is, a⊤b ≤ β3

2 ∥a∥22 +
β−1
3

2 ∥b∥22 for any β3 > 0, we have

(q(t+1) − q(t))⊤(l(t) − l∗) ≤ β3

2
∥q(t+1) − q(t)∥22 +

β−1
3

2
∥l(t) − l∗∥22

≤ β3

2ν̄2
∥l(t+1) − l(t)∥22 +

β−1
3

2
∥l(t) − l∗∥22.

Note that we have

Ejt

[
l(t+1)

]
=

1

n
ℓ(w(t)) +

(
1− 1

n

)
l(t).

Hence, we get, since Et

[
R(t+1)

]
= Ejt

[
R(t+1)

]
,

1

2ηn
Et

[
R(t+1)

]
≤ 1

n
(q(t) − q⋆)(ℓ(w(t))− l∗) +

(
1− 1

n

)
(q(t) − q⋆)⊤(l(t) − l∗)

+
1

nν̄

(
1 +

β3

2ν̄

) n∑
j=1

(ℓj(w
(t))− ℓj(ζj))

2

+
β−1
3

2

n∑
j=1

(ℓj(ζj)− ℓj(w
⋆))2

≤ 1

n
(q(t) − q⋆)(ℓ(w(t))− l∗) +

(
1− 1

n

)
(q(t) − q⋆)⊤(l(t) − l∗)

+
G2

nν̄

(
1 +

β3

2ν̄

) n∑
j=1

∥w(t) − ζ
(t)
j ∥22

+
G2β−1

3

2

n∑
j=1

∥ζ(t)j − w⋆∥22.

Replacing β3 by 2ν̄β3 gives the claim.

Lyapunov function and overall convergence. Lem. 23 introduces two terms 1
n

∑n
j=1 ∥w(t)− ζ

(t)
j ∥22 and

∑n
j=1 ∥ζ

(t)
j −

w⋆∥22 whose evolution can further be bounded by Lem. 26. We now define a Lyapunov function that incorporates all these
terms with appropriate constants to show convergence of the algorithm.

Theorem 24. Consider the setting of Alg. 10, and denote κ1 = M/µ, κ2 = G2n/(ν̄µ), κ3 = κσ(κ1 + 1) + 8κ2,
κσ = nσmax. Define

V (t) = ∥w(t) − w⋆∥22 +R(t) + c1S
(t) + c2T

(t) + c3U
(t)

where

R(t) = 2ηn(q(t) − q⋆)⊤(l(t) − l∗), S(t) =
1

n

n∑
i=1

∥nρ(t)i ∇ri(z
(t)
i)− nq∗i∇ri(w⋆)∥22,

T (t) =

n∑
i=1

∥ζ(t)i − w⋆∥22, U (t) =
1

n

n∑
j=1

∥w(t) − ζ
(t)
j ∥22,

and c1 = (nη)/(4µκ3), c2 = ηµ/2, c3 = max{8κ2
1, 2κ2}−1. Choosing

η ≤ max
{
24µκ3, 4(1 + 4nκ2)κ2µmax{8κ2

1, 2κ2}
}−1

,

we have
Et

[
V (t+1)

]
≤ (1− τ−1)V (t),

where
τ ≥ 2max

{
n, a21κ2, 2κ

2
2}
}
.

Proof. The evolution of the terms S(t), T (t) are simply given by

Et

[
S(t+1)

]
=

1

n
Q(t) +

(
1− 1

n

)
S(t), Et

[
T (t+1)

]
= ∥w(t) − w⋆∥22 +

(
1− 1

n

)
T (t)

for Q(t) = Et

[
∥nq(t)it

∇rit(w(t))− q∗it∇rit(w⋆)∥22
]
. For any τ > 1, we have by combining Cor. 22, Lem. 23, Lem. 26,

that

Et

[
V (t+1)

]
− (1− τ−1)V (t)

≤ K1∥w(t) − w⋆∥22 +K2R
(t) +K3S

(t) +K4T
(t) +K5U

(t) +K6Q
(t)

for

K1 = τ−1 − ηµ+ c2

K2 = τ−1 − 1

n
+

2β1G
2

ν̄(M + µ)κσ
+

(
1− 1

n

)
c3G

2

2ν̄µ

K3 = τ−1 − 1

n
+

η2(1 + β−1
2)(1 + c3)

c1

K4 = τ−1 − 1

n
+

ηnG2β−1
3

2c2ν̄
+

(
1− 1

n

)
c3ηM

2

c2µn

K5 = τ−1 − 1

n
+

2ηG2n

c3ν̄
(1 + β3)

K6 = −η β1

2(M + µ)κσ
+ η2(1 + β2)(1 + c3) +

c1
n
.

Taking

β1 =
(M + µ)κσ

8G2n/ν̄ + (M + µ)κσ
∈ [0, 1], β2 = 2, β3 =

4n2G2

µν̄

c1 =
nηβ1

4(M + µ)κσ
=

nη

4(8G2n/ν̄ + (M + µ)κσ)
, c2 =

ηµ

2
,

we get

K1 = τ−1 − ηµ

2

K2 ≤ τ−1 − 1

n
+

1

4n
+

c3G
2n

2ν̄µn

K3 = τ−1 − 1

n
+

6η(1 + c3)(8G
2n/ν̄ + (M + µ)κσ)

n

K4 = τ−1 − 1

n
+

1

4n
+

2c3M
2

nµ2

K5 = τ−1 − 1

n
+

2ηG2n

c3ν̄

(
1 +

4n2G2

µν̄

)
K6 = − η

32G2n/ν̄ + 4(M + µ)κσ
+ 3η2(1 + c3).

Denoting κ1 = M/µ, κ2 = G2n/(ν̄µ), κ3 = ((κ1 + 1)κσ + 8κ2), choosing

c3 = min{(8κ2
1)

−1, (2κ2)
−1}

and assuming κ2 ≥ 1, so that c3 ≤ 1, we get

K1 = τ−1 − ηµ

2

K2 ≤ τ−1 − 1

2n

K3 ≤ τ−1 − 1

n
+

12ηµκ3

n

K4 = τ−1 − 1

2n

K5 = τ−1 − 1

n
+

2ηµκ2

c3
(1 + nκ2)

K6 = − η

4µκ3
+ 6η2

Finally, we choose

η = min

{
1

24µκ3
,

c3
4(1 + 4nκ2)κ2µ

}
, τ−1 =

1

2
min

{
1

n
, ηµ

}
,

we get Ki ≤ 0 for all i and the result follows.

Corollary 25. Consider the setting of Thm. 24, the iterates of Alg. 9 satisfy

E
[
∥w(t) − w⋆∥22

]
≤ exp(−t/τ)

(
(1 + nc2)∥w(t) − w⋆∥22 + nc1

n∑
i=1

∥q(0)i ∇ri(w(0))−∇ri(w⋆)∥22

+ 2ηn(q(0) − q⋆)⊤(ℓ(w(0))− ℓ(w⋆))
)
.

Proof. Follows from Thm. 24 by taking the expectation over the iterations of the algorithm and using that
R(t), S(t), T (t), U (t) are positive.

Lemma 26. Consider the setting of Thm. 24. Define

U (t) =
1

n

n∑
j=1

∥w(t) − ζ
(t)
j ∥22.

We have, denoting Q(t) = Et

[
∥nq(t)it

∇rit(w(t))− q∗it∇rit(w⋆)∥22
]
,

Et

[
U (t+1)

]
≤ η2(1 + β2)Q

(t) + η2(1 + β−1
2)S(t)

+
ηM2

µn

(
1− 1

n

)
T (t) +

(
1− 1

n

)
G2

2ν̄µn
R(t) +

(
1− 1

n

)
U (t).

Proof. For S(t+1) and T (t+1), it follows from the definition of ζ(t+1)
i , z(t+1)

i and ρ(t+1) in Alg. 10. For U (t+1), we have

Et

[
U (t+1)

]
=

1

n
Et

[
∥w(t+1) − w(t)∥22

]
+

(
1− 1

n

)
Et

 1

n

n∑
j=1

∥w(t+1) − ζ
(t)
j ∥22

 .

We have

Et

 n∑
j=1

∥w(t+1) − ζ
(t)
j ∥22

= Et

 n∑
j=1

∥w(t+1) − w(t)∥22

+ 2Et

 n∑
j=1

(w(t+1) − w(t))⊤(w(t) − ζ
(t)
j)

+ Et

 n∑
j=1

∥ζ(t)j − w(t)∥22

= nη2Et

[
∥v(t)∥22

]
− 2η

n∑
j=1

∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j) +

n∑
j=1

∥ζ(t)j − w(t)∥22.

Next, we have

−2∇(q(t)⊤r)(w(t))⊤(w(t) − ζ
(t)
j) = −2(∇(q(t)⊤r)(w(t))−∇(q(t)⊤r)(ζ(t)j))⊤(w(t) − ζ

(t)
j)

− 2(∇(q(t)⊤r)(ζ(t)j)−∇(q(t)⊤r)(w⋆))⊤(w(t) − ζ
(t)
j)

− 2(∇((q(t) − q⋆)⊤ℓ)(w⋆))⊤(w(t) − ζ
(t)
j)

≤ β4M
2∥ζ(t)j − w⋆∥22 + (β−1

4 + β−1
5 − 2µ)∥ζ(t)j − w(t)∥22

+ β5G
2∥q(t) − q⋆∥22,

because

∇(q(t)⊤r)(w(t))−∇(q(t)⊤r)(ζ(t)j)⊤(w(t) − ζ
(t)
j)

(i)

≥ µ∥ζ(t)j − w(t)∥22

−2(∇(q(t)⊤r)(ζ(t)j)−∇(q(t)⊤r)(w⋆))⊤(w(t) − ζ
(t)
j)

(ii)

≤ β4∥∇(q(t)
⊤
r)(ζ

(t)
j)−∇(q(t)⊤r)(w⋆)∥22

+ β−1
4 ∥ζ

(t)
j − w(t)∥22

(iii)

≤ β4M
2∥ζ(t)j − w(t)∥22 + β−1

4 ∥ζ
(t)
j − w(t)∥22

−2(∇((q(t) − q⋆)⊤ℓ)(w⋆))⊤(w(t) − ζ
(t)
j)

(iv)

≤ β5∥∇((q(t) − q⋆)⊤ℓ)(w⋆)∥22 + β−1
5 ∥ζ

(t)
j − w(t)∥22

(v)

≤ β5G
2∥q(t) − q∥22 + β−1

5 ∥ζ
(t)
j − w(t)∥22,

using in (i) that q(t)
⊤
r is µ-strongly convex, in (ii) and (iv) Young’s inequality with parameters β4, β5, in (iii) that q(t)

⊤
r

is M smooth, and in (v) that the losses ℓi are G-Lipschitz. Hence, we get

Et

[
U (t+1)

]
≤ η2Et

[
∥v(t)∥22

]
+

ηβ4M
2

n

(
1− 1

n

) n∑
i=1

∥ζ(t)j − w⋆∥22 +
(
1− 1

n

)
β5ηG

2∥q(t) − q⋆∥22

+ ((β−1
4 + β−1

5 − 2µ)η + 1)

(
1− 1

n

)
U (t).

Taking β4 = β5 = µ−1, using Lem. 14, and Lem. 45 to bound ∥q(t) − q⋆∥22 ≤ 1
ν̄ (q

(t) − q⋆)(l(t) − l∗) gives the claim.

Proof. The fact that q(t) = ∇h(l(t)) is a consequence of Danskin’s theorem (Bertsekas, 1997, Proposition B.25) and the
fact that the maximization problem is strongly concave. The function h is 1/ν̄-smooth as the convex conjugate of a ν̄-
strongly convex function (Nesterov, 2005, Theorem 1). The final inequalities are shown by, e.g., Nesterov (2018, Theorem
2.1.5).

Lemma 27. Consider r : w 7→ (ri(w))
n
i=1 with ri : Rn → R M -smooth and µ-strongly convex. For any p, q ∈ ∆n =

{x ∈ Rn, x ≥ 0, x⊤1 = 1} such that ∥p∥∞ ≤ σmax, ∥q∥∞ ≤ σmax, and any w, v ∈ Rd, we have

− (q − p)⊤(r(v)− r(w)) + (∇(q⊤r)(v)−∇(p⊤r)(w))⊤(v − w)

≥ µ

2
∥w − v∥22 +

1

2(M + µ)σmax

(
n∑

i=1

∥pi∇ri(w)− pi∇ri(v)∥22 +
n∑

i=1

∥qi∇ri(w)− qi∇ri(v)∥22

)
.

Proof. For any i ∈ [n], such that pi > 0, we have by Lem. 41, that for any w, v ∈ Rd,

piri(v) ≥ piri(w) +∇(piri)(w)⊤(v − w) +
1

2pi(M + µ)
∥pi∇f(w)− pi∇f(v)∥22 +

piµ

4
∥w − v∥22

≥ piri(w) +∇(piri)(w)⊤(v − w) +
1

2σmax(M + µ)
∥pi∇ri(w)− pi∇ri(v)∥22 +

piµ

4
∥w − v∥22.

The second inequality holds for pi = 0 too and so for all i since pi ≥ 0. Summing from 1 to n and using that p⊤1 = 1,
we get

p⊤r(v) ≥ p⊤r(w) +∇(p⊤r)(w)⊤(v − w)

+
1

2(M + µ)σmax

n∑
i=1

∥pi∇ri(w)− pi∇ri(v)∥22 +
µ

4
∥w − v∥22.

Similarly, we have that

q⊤r(w) ≥ q⊤r(v) +∇(q⊤r)(v)⊤(w − v)

+
1

2(M + µ)σmax

n∑
i=1

∥qi∇ri(w)− qi∇ri(v)∥22 +
µ

4
∥w − v∥22.

Summing both inequalities give the claim.

E. SaddleSAGA: Tackling the Saddle Point Problem Directly
We give an incremental saddle point algorithm to minimize the objective (3) in its min-max form directly. We build upon
the saddle version of the SAGA algorithm (Palaniappan & Bach, 2016) to this end — we call the algorithm SaddleSAGA.
For simplicity, we denote

ν̄ = 2nν.

We consider directly the min-max problem

min
w∈Rd

max
q∈P(σ)

[
Ψ(w, q) := q⊤ℓ(w) +

µ

2
∥w∥22 −

ν̄

2
∥q − 1n/n∥22

]
. (32)

Note that the function Ψ is strongly convex in its first argument and strongly concave in its second argument. A pair
(w⋆, q⋆) is called a saddle point of the convex-concave function Ψ if

max
q∈P(σ)

Ψ(w⋆, q) ≤ Ψ(w⋆, q⋆) ≤ min
w∈Rd

Ψ(w, q⋆) .

In our setting, we can verify that the pair w⋆ = argminLσ and q⋆ = qopt(ℓ(w⋆)) is the unique saddle point of Ψ.

Algorithm. We present SaddleSAGA in in Algorithm 11. The algorithm takes advantage of the availability of proximal
operators, defined for a convex function f : Rd → R, and x ∈ Rd as

proxf (x) = argmin
y∈Rd

f(y) +
1

2
∥x− y∥22.

The proximal update on w(t+1) can be computed in closed form. The proximal update on q(t+1) can be solved with the
PAV algorithm, see Appx. C. Overall, the time and space complexity of SaddleSAGA is identical to that of SpecSAGA.

Rate of Convergence. We prove the following rate of convergence for SaddleSAGA.

Theorem 28. The iterates (w(t), q(t)) of Alg. 11 with learning rates

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}
, δ = min

{
1

ν̄
,

µ

8n2G2

}
converge linearly to the saddle point of (32). In particular, for non-trivial regularization µν̄ ≤ 8n2G2 and µ ≤ 6(Lκσ +
2G2n/ν̄), the number of iterations t to get ∥w(t) − w⋆∥22 + c∥q(t) − q⋆∥22 ≤ ε (for some constant c) is at most

O

((
n+ κκσ +

n2G2

µν̄

)
ln

1

ε

)
.

The proof of this statement is given as Cor. 34 later in this section.

Comparison to Previous Work. The version of SAGA adapted to saddle point problems, proposed by Palaniappan &
Bach (2016), forms the basis of Algorithm 11. Compared to Algorithm 11, the algorithm of (Palaniappan & Bach, 2016)
only uses a single learning rate for both the primal and dual updates. This seemingly simple modification leads to a
significant difference in theory and in practice. Theoretically, the rate obtained by (Palaniappan & Bach, 2016) in terms of
our problem’s constants is

O

((
n+

nG2

µν̄
+ nκ2

)
ln

1

ε

)
.

Compared to this, the rate we prove for SaddleSAGA improves κ2 to κκσ while suffering an additional factor of n in the
n2G2/(µν̄) term. The rate of SaddleSAGA matches that of Thm. 1 when the shift cost ν̄ is large enough, while the rate of
(Palaniappan & Bach, 2016) is worse by a factor of κ.

Empirical comparisons between SaddleSAGA and the algorithm of (Palaniappan & Bach, 2016) are given in Appx. I.

E.1. Convergence proof

In the following, we denote by Et [·] the expecation of a quantity according to the randomness of it conditioned on w(t), q(t).
Throughout the proof, we consider that the losses are L-smooth and G-Lipschitz continuous.

Evolution of the distances to the optimum. We start by using the contraction properties of the proximal operator to
bound the evolution of the distances to the saddle point (w⋆, q⋆).

Algorithm 11 SaddleSAGA Algorithm: Solving the Min-Max Problem Directly

Inputs: Initial points w(0), q(0) = un = 1/n, stepsizes η > 0, δ > 0, number of iterations T
1: Set ρ(0) = q(0), l(0) = (ℓi(w

(0)))ni=1 ∈ Rn, g(0) = (∇ℓi(w(0)))ni=1 ∈ Rd×n, ḡ(0) =
∑n

i=1 ρ
(0)
i g

(0)
i ∈ Rd

2: for t = 0, . . . , T − 1 do
3: Sample it ∼ Unif([n])

4: v(t) = nq
(t)
it
∇ℓit(w(t))− (nρ

(t)
it
g
(t)
it

)− ḡ(t))

5: w(t+1) = proxηµ∥·∥2
2
(w(t) − ηv(t))

6: π(t) = nℓit(w
(t))eit − (nl

(t)
it
eit − l(t))

7: q(t+1) = proxιP(σ)+δν̄∥·−1n/n∥2
2/2

(q(t) − δπ(t))

8: ρ
(t+1)
it

= q
(t)
it

and ρ
(t+1)
j = ρ

(t)
j for j ̸= it

9: l
(t+1)
it

= ℓit(w
(t)) and l

(t+1)
j = l

(t)
j for j ̸= it

10: g
(t+1)
it

= ∇ℓit(w(t)) and g
(t+1)
j = g

(t)
j for j ̸= it

11: ḡ(t+1) =
∑n

i=1 ρ
(t+1)
i g

(t+1)
i = ρ

(t+1)
it
∇ℓit(w(t))− ρ

(t)
it
git + ḡ(t)

Output: Final points w(T), q(T).

Lemma 29. Consider the setting of Alg. 11. We have,

Et

[
∥w(t+1) − w⋆∥22

]
≤ 1

(1 + ηµ)2

(
∥w(t) − w⋆∥22

− 2η(∇(q(t)⊤ℓ)(w(t))−∇(q∗⊤ℓ)(w⋆))⊤(w(t) − w⋆)

+ η2Et

[
∥v(t) −∇(q∗⊤ℓ)(w⋆)∥22

])
Et

[
∥q(t+1) − q⋆∥22

]
≤ 1

(1 + δν̄)2

(
∥q(t) − q⋆∥22

+ 2δ(ℓ(w(t))− ℓ(w⋆))⊤(q(t) − q⋆)

+ δ2Et

[
∥π(t) − ℓ(w⋆)∥22

])
.

Proof. By considering the first-order optimality conditions of the problem one verifies that w⋆, q⋆ satisfy for any η, δ,

w⋆ = proxηµ∥·∥2
2/2

(w⋆ − η∇(q⋆⊤ℓ)(w⋆)), q⋆ = proxιP(σ)+δν̄∥·−1n/n∥2
2/2

(q⋆ + δℓ(w⋆)).

Recall that the proximal operator of a c-strongly convex function h is contractive such that ∥ proxh(z) − proxh(z
′)∥2 ≤

1
1+c∥z − z′∥2. In our case, it means that

∥w(t+1) − w⋆∥2 ≤
1

1 + ηµ
∥w(t) − ηv(t) − (w⋆ − η∇(q⋆⊤ℓ)(w⋆))∥2,

∥q(t+1) − q⋆∥2 ≤
1

1 + δν̄
∥q(t) + δπ(t) − (q⋆ + δℓ(w⋆))∥2.

By taking the squared norm, the expectation, expanding the squared norms and using that Et

[
v(t)
]
= ∇(q(t)⊤ℓ)(w(t)),

Et

[
π(t)

]
= ℓ(w(t)), we get the result.

Variance term evolutions. We consider the evolution of the additional variance term added to the dual variables.

Lemma 30. In the setting of Alg. 11, we have for any β2 > 0,

Et

[
∥π(t) − ℓ(w⋆)∥22

]
≤ (n+ (n− 1)β2)nG

2∥w(t) − w⋆∥22
+ (n− 1)(1 + β−1

2)∥ℓ(w⋆)− l(t)∥22.

Proof. As in the proof of Lem. 14, we have for some β2 > 0,

Et

[
∥π(t) − ℓ(w⋆)∥22

]
= Eit

[
∥(nℓit(w(t))− nℓit(w

⋆))eit

+ (nℓit(w
⋆)− nℓit(z

(t)
it

))eit − (ℓ(w⋆)− l(t))∥22
]

≤ −β2∥ℓ(w(t))− ℓ(w⋆)∥22
+ (1 + β2)Et

[
∥(nℓit(w(t))− nℓit(w

⋆))eit∥22
]

+ (1 + β−1
2)Et

[
∥(nℓit(w⋆)− nℓit(z

(t)
it

))eit∥22
]

− (1 + β−1
2)∥ℓ(w⋆)− l(t)∥22

= (n+ (n− 1)β2)∥ℓ(w(t))− ℓ(w⋆)∥22
+ (n− 1)(1 + β−1

2)∥ℓ(w⋆)− l(t)∥22
≤ (n+ (n− 1)β2)nG

2∥w(t) − w⋆∥22
+ (n− 1)(1 + β−1

2)∥ℓ(w⋆)− l(t)∥22.

Incorporating smoothness and convexity of the losses. Our approach differs from (Palaniappan & Bach, 2016) by
Cor. 32 stemming from Lem. 31. We exploit the smoothness and convexity of the losses to get a negative term
−Et

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
used to temper the variance of the primal updates at the price of an additional

positive term ∥q(t) − q⋆∥22. The sum of both being positive we can dampen the effect of the additional positive term
∥q(t)− q⋆∥22 at the price of getting a less negative term−Et

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
. The insights of Cor. 32

inspired Cor. 22 for the proof of Alg. 9 for any shift costs. However, they slightly differ, so we provide their complete
statements here.

Lemma 31. For any q1, q2 ∈ P(σ), w1, w2 ∈ Rd, we have,

(q1 − q2)
⊤(ℓ(w1)− ℓ(w2))− (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≤ − 1

2Lnσmax

(
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq2,i∇ℓi(w2)∥22 + ∥nq1,i∇ℓ(w2)− nq2,i∇ℓ(w1)∥22

])
+

G2

Lσmax
∥q1 − q2∥22.

Proof. For any q ∈ P(σ) and any w, v ∈ Rd, we have by smoothness and convexity of qiℓi, for qi > 0

qiℓi(v) ≥ qiℓi(w) + qi∇ℓi(w)⊤(v − w) +
1

2Lqi
∥qi∇ℓi(w)− qi∇ℓi(v)∥22 (33)

≥ qiℓi(w) + qi∇ℓi(w)⊤(v − w) +
1

2Ln2σmax
∥nqi∇ℓi(w)− nqi∇ℓi(v)∥22. (34)

Note that the second inequality is then true even if qi = 0, since in that case all terms are 0. Therefore, for any q1, q2 ∈
P(σ), and any w1, w2, we have

q⊤1 ℓ(w2) ≥ q⊤1 ℓ(w1) +∇(q⊤1 ℓ)(w1)
⊤(w2 − w1) +

1

2Lnσmax
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq1,i∇ℓi(w2)∥22

]
,

q⊤2 ℓ(w1) ≥ q⊤2 ℓ(w2) +∇(q⊤2 ℓ)(w2)
⊤(w1 − w2) +

1

2Lnσmax
Ei∼Unif[n]

[
∥nq2,i∇ℓ(w1)− nq2,i∇ℓ(w2)∥22

]
.

Combining these inequalities, we get

− (q1 − q2)
⊤(ℓ(w1)− ℓ(w2)) + (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≥ 1

2Lnσmax

(
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq1,i∇ℓi(w2)∥22 + ∥nq2,i∇ℓ(w1)− nq2,i∇ℓ(w2)∥22

])
.

For any 4 vectors a, b, c, d,

∥a− b∥22 + ∥c− d∥22 = ∥a− c∥22 + ∥b− d∥22 − 2(a− d)⊤(b− c).

Applying this for a = q1,i∇ℓi(w1), b = qi,1∇ℓi(w2), c = q2,i∇ℓi(w2), d = q2,i∇ℓi(w1), we get

− (q1 − q2)
⊤(ℓ(w1)− ℓ(w2)) + (∇(q⊤1 ℓ)(w1)−∇(q⊤2 ℓ)(w2))

⊤(w1 − w2)

≥ 1

2Lnσmax

(
Ei∼Unif[n]

[
∥nq1,i∇ℓi(w1)− nq2,i∇ℓi(w2)∥22 + ∥nq1,i∇ℓ(w2)− nq2,i∇ℓ(w1)∥22

]
− 2n2Ei∼Unif[n]

[
(q1,i − q2,i)

2∇ℓi(w1)
⊤∇ℓi(w2)

])
.

Reorganizing the terms and bounding∇ℓi(w1)
⊤∇ℓi(w2) by G2 we get the result.

Corollary 32. In the setting of Alg. 11, we have for any α ∈ [0, 1]

Et

[
(1 + ηµ)2

η
∥w(t+1) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t+1) − q⋆∥22

]
≤ η−1∥w(t) − w⋆∥22 +

(
δ−1 +

2αG2

Lσmax

)
∥q(t) − q⋆∥22

+ ηEt

[
∥v(t) −∇(q∗⊤ℓ)(w⋆)∥22

]
+ δEt

[
∥π(t) − ℓ(w⋆)∥22

]
− α

Lnσmax
Et

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
.

Proof. Follows from Lem. 31

Lyapunov function and overall convergence. Thm. 33 shows that an appropriately defined Lyapunov function incor-
porating the distances to the optima, decrease exponentially.

Theorem 33. Consider the setting of Alg. 11. Define the Lyapunov function

V (t) =
(1 + ηµ)2

η
∥w(t) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t) − q⋆∥22

+ c1

n∑
i=1

∥nρ(t)i ∇ℓi(z
(t)
i)− nq∗i∇ℓi(w⋆)∥22 +

c2
G2
∥l(t) − ℓ(w⋆)∥22,

with c1 = n
2(Lκσ+2G2n/ν̄) and c2 = µ

2 with κσ = nσmax. By taking

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}
, δ = min

{
1

ν̄
,

µ

8n2G2

}
,

we have
Et

[
V (t+1)

]
≤ (1− τ−1)V (t),

for some τ > 1. In particular, for small regularizations, i.e., µν̄ ≤ 8n2G2 and µ ≤ 6(Lκσ + 2G2n/ν̄), we have

τ = max

{
2n, 4 +

24Lκσ

µ
+

48G2n

µν̄
, 2 +

16G2n2

ν̄µ

}
.

Proof. Let us denote

T (t) =
1

n

n∑
i=1

∥nρ(t)i ∇ℓi(z
(t)
i)− nq∗i∇ℓi(w⋆)∥22, S(t) = ∥l(t) − ℓ(w⋆)∥22,

we have,

Et

[
T (t+1)

]
≤ 1

n2

n∑
i=1

∥nq(t)i ∇ℓi(w(t))− nq∗i∇ℓi(w⋆)∥22 +
(
1− 1

n

)
T (t),

Et

[
S(t+1)

]
≤ G2∥w(t) − w⋆∥22 +

(
1− 1

n

)
S(t).

By combining Cor. 32, Lem. 14, Lem. 30 we have, denoting κσ = nσmax,

Et

[
V (t+1)

]
≤
(
η−1 + δ(n+ (n− 1)β2)nG

2 + c2
)
∥w(t) − w⋆∥22

+

(
δ−1 +

2αnG2

Lκσ

)
∥q(t) − q⋆∥22

+

(
η(1 + β1) +

c1
n
− α

Lnσmax

)
Ei∼Unif[n]

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
+

(
η(1 + β−1

1) + c1

(
1− 1

n

))
1

n

n∑
i=1

∥nρ(t)i ∇ℓi(z
(t)
i)− nq∗i∇ℓi(w⋆)∥22

+

(
δ(n− 1)(1 + β−1

2) +
c2
G2

(
1− 1

n

))
∥ℓ(w⋆)− l(t)∥22.

Therefore for some τ > 1, we have

Et

[
V (t+1)

]
− (1− τ−1)V (t) ≤ K1∥w(t) − w⋆∥22 +K2∥q(t) − q⋆∥22

+K3Ei∼Unif[n]

[
∥nqi1∇ℓit(w(t))− nq∗it∇ℓit(w⋆)∥22

]
+K4

1

n

n∑
i=1

∥nρ(t)i ∇ℓi(z
(t)
i)− nq∗i∇ℓi(w⋆)∥22 +K5∥ℓ(w⋆)− l(t)∥22,

with,

K1 =
(1 + ηµ)2

η

(
1 + η

(
(n+ (n− 1)β2)nG

2δ + c2
)

(1 + ηµ)2
− (1− τ−1)

)

K2 =
(1 + δν̄)2

δ

(
1 + 2δαG2n/(Lκσ)

(1 + δν̄)2
− (1− τ−1)

)
K3 = η(1 + β1) +

c1
n
− α

Lκσ

K4 = c1

(
η(1 + β−1

1)
1

c1
+

(
1− 1

n

)
− (1− τ−1)

)
K5 =

c2
G2

(
δ(n− 1)(1 + β−1

2)
G2

c2
+

(
1− 1

n

)
− (1− τ−1)

)
.

Fix β1 = 2, β2 = 1. Denote also η̄ = ηµ
1+ηµ ∈ (0, 1) and δ̄ = δν̄

1+δν̄ ∈ (0, 1) with e.g. η = η̄
µ(1+η̄) . We have then for

c1/n = α/(2Lκσ) and c2 = µ/2,

K1 ≤ ηµ2η̄

(
η̄2 −

(
1− 2n2G2δ

µ

)
η̄ + τ−1

)
K2 ≤ δν̄2δ̄

(
δ̄2 − 2

(
1− αG2n

Lκσ ν̄

)
δ̄ + τ−1

)
K3 = 3η − α

2Lκσ

K4 = c1

(
3η

Lκσ

nα
− 1

n
+ τ−1

)
K5 ≤

c2
G2

(
δ
4nG2

µ
− 1

n
+ τ−1

)
.

We can further take 3η ≤ α/(2Lκσ) and δ ≤ µ/(8n2G2). By imposing the constraint τ ≥ 2n, we can simplify

K1 ≤ ηµ2η̄

(
η̄2 − 3

4
η̄ + τ−1

)
K2 ≤ δν̄2δ̄

(
δ̄2 − 2

(
1− αG2n

Lκσ ν̄

)
δ̄ + τ−1

)
K3 ≤ 0,K4 ≤ 0,K5 ≤ 0.

Recall that α must be chosen in [0, 1]. Taking then

α =
Lκσ

Lκσ + 2G2n/ν̄
≤ Lκσ ν̄

2G2n
,

we get

K1 ≤ ηµ2η̄

(
η̄2 − 3

4
η̄ + τ−1

)
, K2 ≤ δν̄2δ̄

(
δ̄2 − δ̄ + τ−1

)
.

By taking η ≤ 1/µ, δ ≤ 1/ν̄, we get η̄ ≤ 1/2, δ̄ ≤ 1/2 and so η̄2 − 3
4 η̄ ≤ − 1

4 η̄ and δ̄2 − δ̄ ≤ − 1
2 δ̄. Therefore taking

η = min

{
1

µ
,

1

6(Lκσ + 2G2n/ν̄)

}
, δ = min

{
1

ν̄
,

µ

8n2G2

}
,

we get Ki ≤ 0 for all i as long as τ ≥ max{2n, 4/η̄, 2/δ̄}. In our case,

4

η̄
=

{
4
(
1 + 6Lκσ

µ + 12G2n
µν̄

)
if µ ≤ 6(Lκσ + 2G2n/ν̄),

8 otherwise,

2

δ̄
=

{
2
(
1 + 8G2n2

ν̄µ

)
if µν̄ ≤ 8n2G2,

4 otherwise.

The result follows.

Corollary 34. Under the setting of Thm. 33, after t iterations of Alg. 11, we have

E
[
(1 + ηµ)2

η
∥w(t) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(t) − q⋆∥22

]
≤ exp(−t/τ)

(
(1 + ηµ)2

η
∥w(0) − w⋆∥22 +

(1 + δν̄)2

δ
∥q(0) − q⋆∥22

+ c1n
2

n∑
i=1

∥nq(0)i ∇ℓi(w(0))− q∗i∇ℓi(w⋆)∥22 +
c2
G2
∥ℓ(w(0))− ℓ(w⋆)∥22

)
.

F. Improving SpecSAGA with Moreau Envelopes
Notation. The Moreau envelope and the proximal (prox) operator of a convex function f : Rd → R are respectively
defined for a constant η > 0 as

Mη[f](w) = min
z∈Rd

{
f(z) +

1

2η
∥w − z∥22

}
, (35)

proxηf (w) = argmin
z∈Rd

{
f(z) +

1

2η
∥w − z∥22

}
. (36)

A fundamental property is that the gradient of the Moreau envelope is related to the prox operator:

∇Mη[f](w) =
1

η
(w − proxηf (w)) . (37)

The algorithm is given in Algorithm 12. For simplicity, we denote

ν̄ = 2nν.

Implementation Details. The proximal operators can be computed in closed form or algorithmically for common losses.
We list here the implementations for some losses of interest. The proximal operators for the binary or multiclass logistic
losses cannot be obtained in closed form, we approximate them by one Newton step.

Squared loss. For the squared loss, defined as ℓ(w) = 1
2 (w

⊤x− y)2 for x ∈ Rd, y ∈ R, then

proxηℓ(w) = w − ηx

1 + η ∥x∥2
(
x⊤w − y

)
.

Binary logistic loss. For the binary logistic loss defined for x ∈ Rd, y ∈ {0, 1}, w ∈ Rd as ℓ(w) = −y ln(σ(x⊤w)) −
(1 − y) ln(1 − σ(x⊤w)) = −yx⊤w + ln(1 + ex

⊤w), we approximate the proximal operator by one Newton step, whose
formulation reduces to

proxηℓ(w) ≈ w − ηg

1 + ηq∥x∥22
x

Multinomial logistic loss. For the multinomial logistic loss of a linear model defined by W on a sample (x, y) as ℓ(W) =
−y⊤Wx + ln(exp(Wx)⊤1). for x ∈ Rd, y ∈ {0, 1}k, y⊤1 = 1, W ∈ Rk×d, we consider approximating the proximal
operator by one Newton-step, whose formulation reduces to

proxηℓ(W) ≈W − ηz∗x⊤

z∗ = z1 − λ∗z2,

z1 = −y ⊘ z3 + z2, z2 = σ(Wx)⊘ z3, z3 = (1+ η∥x∥22σ(Wx)), λ∗ =
z⊤1 1

z⊤2 1
.

Algorithm 12 SpecSAGA-Prox

Inputs: Initial points w(0), spectrum σ, stepsize η > 0, number of iterations T , regularization parameter µ > 0, shift
cost ν̄ > 0, losses ℓ1, . . . , ℓn.

1: l(0) = (ℓi(w
(0)))ni=1 ∈ Rn.

2: g(0) = (∇ri(w(0)))ni=1 ∈ Rn×d.
3: q(0) = ∇hσ(l

(0))

4: ḡ(0) =
∑n

i=1 q
(0)
i g

(0)
i ∈ Rd.

5: for t = 0, . . . , T − 1 do
6: Sample it ∼ q(t) and jt ∼ Unif([n]).
7: u(t) = w(t) + η(g

(t)
it
− ḡ(t)). ▷ Add control variate to w(t).

8: w(t+1) = proxηrit (u
(t)). ▷ Proximal update on the sampled loss.

9: l
(t+1)
jt

= ℓjt(w
(t)) and l

(t+1)
j = l

(t)
j for j ̸= jt.

10: g
(t+1)
jt

= ∇Mη[rjt]
(
w(t) + η(g

(t)
jt
− ḡ(t))

)
▷ Update table with grad. of Moreau env.

11: g
(t+1)
j = g

(t)
j for j ̸= jt.

12: q(t+1) = argmaxq∈P(σ) q
⊤l(t+1) − ν̄

2∥q − 1n/n∥22.

13: ḡ(t+1) =
∑n

i=1 q
(t+1)
i g

(t+1)
i ∈ Rd.

Output: Final point w(T).

Regularized losses. For a convex ℓ : Rd → R, define r(w) = ℓ(w) + (µ/2) ∥w∥2. Then, we have,

proxηr(w) = prox ηℓ
1+ηµ

(
w

1 + ηµ

)
.

F.1. Convergence Analysis

Algorithm 12 satisfies the following convergence bound. Recall that γ⋆ = ∥∇ℓ(w⋆)∥2.

Theorem 35. Suppose the smoothing parameter ν̄ is set large enough as

ν̄ ≥ γ∗G

M
min

{√
2nκ

4κ∗
σ − 1

, 2κ

}
,

and define a constant
τ = 2 +max{2(n− 1), κ(4κ∗

σ − 1)} ,
for κ∗

σ = σn/σ1. Then, the sequence of iterates (w(t)) generated by Algorithm 12 with learning rate η =
M−1 min {1/(4κ∗

σ − 1), κ/(n− 1)} satisfies

E
∥∥∥w(t) − w⋆

∥∥∥2
2
≤ (n+ 3/2) exp(−t/τ)

∥∥∥w(0) − w⋆
∥∥∥2
2
.

We now prove Thm. 35.

Notation for the Proof. We denote Et[·] denote the expectation conditioned on the randomness until time t; more precisely,
on the sigma-algebra generated by w(t). Further, we define w∗

i = w∗ + η∇ri(w∗). By analyzing the first-order conditions
of the prox, it is easy to see that

proxηri(w
∗
i) = w∗ . (38)

We will use the Lyapunov function

V (t) =
∥∥∥w(t) − w∗

∥∥∥2 + c1

n∑
i=1

∥∥∥z(t)i − w∗
∥∥∥2 + c2

M2

n∑
i=1

∥∥∥g(t)i −∇ri(w∗)
∥∥∥2 . (39)

The first step is to analyze the effect of the update on w(t) as the first term of the Lyapunov function.

Proposition 36. The iterates of Algorithm 12 satisfy

(1 + µη)Et

∥∥∥w(t+1) − w∗
∥∥∥2 ≤ ∥∥∥w(t) − w∗

∥∥∥2 + 2η2σn

n∑
i=1

∥∥∥g(t)i −∇ri(w∗)
∥∥∥2

+
2η2γ2

∗G
2

ν̄2

n∑
i=1

∥∥∥z(t)i − w∗
∥∥∥2

− η2
(
1 +

1

Mη

)
σ1

n∑
i=1

∥∥∥∇Mη[ri]
(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥∥∥2 .

Proof. We use the co-coercivity of the prox operator (Thm. 42) to get

(1 + µη)Et

∥∥∥w(t+1) − w∗
∥∥∥2 = (1 + µη)Et

∥∥∥proxηrit (u(t))− proxηrit (w
∗
it)
∥∥∥2

≤ Et⟨u(t) − w∗
it ,proxηrit (u

(t))− proxηrit (w
∗
it)⟩

= Et⟨u(t) − w∗
it , w

(t+1) − w∗⟩
= Et⟨u(t) − w

(t)
it

, w(t) − w∗⟩︸ ︷︷ ︸
=:T1

+Et⟨u(t) − w∗
it , w

(t+1) − w(t)⟩︸ ︷︷ ︸
=:T2

,

(40)

where we added and subtracted w(t) in the last step.

For the first term, we observe that Et[u
(t)] = w(t) and Et[w

∗
it
] = w∗ + η Et[∇rit(w∗)] so that

T1 =
〈
Et[u

(t) − w∗
it], w

(t) − w∗
〉
=
∥∥∥w(t) − w∗

∥∥∥2 + η
〈
Et[∇rit(w∗)], w(t) − w∗

〉
. (41)

For T2, note that
w(t+1) − w(t) = −η

(
∇Mη[rit](u

(t))− g
(t)
it

+ ḡ(t)
)
.

We manipulate T2 to set ourselves up to apply co-coercivity of prox-gradient by adding and subtracting∇Mη[rit](w
∗
it
) as

follows:

T2 = − η Et⟨u(t) − w
(t)
it

,∇Mη[rit](u
(t))− g

(t)
it

+ ḡ(t)⟩
=−η Et⟨u(t) − w∗

it ,∇Mη[rit](u
(t))−∇Mη[rit](w

∗
it)⟩︸ ︷︷ ︸

=:T ′
2

−η Et⟨u(t) − w∗
it ,∇Mη[rit](w

∗
it)− g

(t)
it

+ ḡ(t)⟩︸ ︷︷ ︸
=:T ′′

2

.

Now, co-coercivity of the prox-gradient (Thm. 43) of the M -smooth function rit gives

T ′
2 ≤ −η2

(
1 +

1

Mη

)
Et

∥∥∥∇Mη[rit](u
(t))−∇Mη[rit](w

∗
it)
∥∥∥2 . (42)

Next, we use u(t) = w(t) + η(g
(t)
it
− ḡ(t)), and w∗

i = w∗ + η∇ri(w∗) and ∇Mη[ri](w
∗
i) = ∇ri(w∗) to get

T ′′
2 = −η Et⟨w(t) − w∗ − η(∇rit(w∗)− g

(t)
it

+ ḡ(t)),∇rit(w∗)− g
(t)
it

+ ḡ(t)⟩

= −η ⟨w(t) − w∗,Et[∇rit(w∗)]⟩+ η2 Et

∥∥∥g(t)it
− ḡ(t) −∇rit(w∗)

∥∥∥2 ,

where we used that Et[g
(t)
it

] = ḡ(t). Next, we use ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 for any vectors x, y and E∥X − E[X]∥2 ≤
E∥X∥2 for any random vector X to get

T ′′
2 ≤ −η ⟨w(t) − w∗,Et[∇rit(w∗)]⟩+ 2η2 Et

∥∥∥g(t)it
−∇rit(w∗)

∥∥∥2 + 2η2 ∥Et[∇rit(w∗)]∥2 . (43)

Plugging (43), (42), and (43) into (40) gives us

(1 + µη)Et

∥∥∥w(t+1) − w∗
∥∥∥2 ≤ ∥∥∥w(t) − w∗

∥∥∥2 + 2η2 Et

∥∥∥g(t)it
−∇rit(w∗)

∥∥∥2 + 2η2 ∥Et [∇rit(w∗)]∥2

− η2
(
1 +

1

Mη

)
Et

∥∥∥∇Mη[rit](u
(t))−∇rit(w∗)

∥∥∥2 .
(44)

Next, we note that P(σ) ⊂ [σ1, σn]
n to get,

Et ∥git −∇rit(w∗)∥2 =

n∑
i=1

q
(t)
i ∥gi −∇ri(w∗)∥2 ≤ σn

n∑
i=1

∥gi −∇ri(w∗)∥2 , and

Et

∥∥∥∇Mη[rit](u
(t))−∇rit(w∗)

∥∥∥2 =

n∑
i=1

q
(t)
i

∥∥∥∇Mη[ri]
(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥∥∥2
≥ σ1

n∑
i=1

∥∥∥∇Mη[ri]
(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥∥∥2 .

Moreover, we also have that

∥Et[∇rit(w∗)]∥2 =
∥∥∥∇ℓ(w⋆)⊤(qopt(l(t))− qopt(ℓ(w⋆)))]

∥∥∥2
γ2
∗

∥∥∥qopt(l(t))− qopt(ℓ(w⋆)))
∥∥∥2
2

≤ γ2
∗G

2

ν̄2

n∑
i=1

∥∥∥z(t)i − w∗
∥∥∥2 .

Plugging these back into (44) completes the proof.

Next, we analyze the other two terms of the Lyapunov function. The proof is trivial, so we omit it.

Proposition 37. We have,

Et

[
n∑

i=1

∥∥∥z(t+1)
i − w∗

∥∥∥2] =(1− n−1)

n∑
i=1

∥∥∥z(t)i − w∗
∥∥∥2 + ∥∥∥w(t) − w∗

∥∥∥2 ,

Et

[
n∑

i=1

∥∥∥g(t+1)
i −∇ri(w∗)

∥∥∥2] =(1− n−1)

n∑
i=1

∥∥∥g(t)i −∇ri(w∗)
∥∥∥2

+
1

n

n∑
i=1

∥∥∥∇Mη[ri]
(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥∥∥2 .

We are now ready to prove Thm. 35.

Proof of Thm. 35. Let τ > 1 be a constant to be determined later and let Γ := γ2
∗G

2/(M2ν̄2) denote the effect of the
smoothing. Combining Props. 36 and 37, we can write

Et[V
(t)]− (1− τ−1)V (t) ≤ −

∥∥∥w(t) − w∗
∥∥∥2(µη

1 + µη
− c1 − τ−1

)
− σ1

n∑
i=1

∥∥∥∇Mη[ri]
(
w(t) − η(g

(t)
i − ḡ(t))

)
−∇ri(w∗)

∥∥∥2(η2(1 + (Mη)−1)

1 + µη
− c2

nσ1M2

)

−
n∑

i=1

∥∥∥z(t)i − w∗
∥∥∥2(c1(n−1 − τ−1)− 2η2γ2

∗G
2

(1 + µη)ν̄2

)

−
n∑

i=1

∥∥∥g(t)i −∇ri(w∗)
∥∥∥2(c2

M2
(n−1 − τ−1)− 2η2σn

1 + µη

)
.

(45)

Let η = b/M . Our goal is to set the constants b, c1, c2, τ > 0 so that the right side above is non-positive and τ is as small
as possible. We will require τ ≥ 2n so that n−1 − τ−1 ≥ (2n)−1. Thus, we can have the right side nonpositive with

b

b+ κ
− c1 − τ−1 ≥ 0 (46a)

b(b+ 1) ≥ c2
nσ1

(
1 +

b

κ

)
(46b)

c1
2n
− 2b2Γ

1 + b/κ
≥ 0 (46c)

c2
2n
− 2b2σn

1 + b/κ
≥ 0 . (46d)

Let us set c1 = τ−1. By setting c2 = 4κnσnb
2/(b+ κ), we ensure that (46d) is satisfied. Next, we satisfy (46a) with

b

b+ κ
= 2τ−1 ⇐⇒ b =

2κ

τ − 2
.

Now, (46b) is an inequality only in τ . It is satisfied with

τ ≥ τ∗ := 2 + 2κ(4κ∗
σ − 1) .

This lets us fix τ = max{2n, τ∗} throughout, which leads to the value of η as claimed in the theorem statement. Finally,
(46c) requires

4nκ2Γ

τ − 2
≤ 1 ⇐⇒ ν̄ ≥

√
nκγ∗G

M
min

{√
2

κ(4κ∗
σ − 1)

,
2√
n

}
.

Thus, under these conditions, the right-hand side of (45) is non-negative. Iterating (45) over t updates, we get

E[V (t)] = (1− τ−1)tV (0) ≤ exp(−t/τ)V (0) .

To complete the proof, we note that c1 ≤ 1/(2n) and

c2 =
4κnσnb

2

b+ κ
= 8

κκσ

τ
b ≤ 8

κκσ

κ(4κ∗
σ − 1)

1

κ∗
σ − 1

≤ 8

9
.

This lets us use the fact that∇ri is M -Lipschitz to bound

V (0) =
∥∥∥w(0) − w∗

∥∥∥+ c1

n∑
i=1

∥∥∥w(0) − w∗
∥∥∥2 + c2

M2

n∑
i=1

∥∥∥∇ri(w(0))−∇ri(w∗)
∥∥∥2

≤ (n+ 3/2)
∥∥∥w(0) − w∗

∥∥∥2 .

G. Technical Results from Convex Analysis
In this section, we collect several results, mostly from Nesterov (2018), that are used throughout the manuscript. In the
following, let ∥·∥ denote an arbitrary norm on Rd and let ∥·∥∗ denote its associated dual norm.

The first concerns L-smooth function, or those with L-Lipschitz continuous gradient.

Theorem 38. (Nesterov, 2018, Theorem 2.1.5) The conditions below are considered for any x, y ∈ Rd and α ∈ [0, 1].
The following are equivalent for a differentiable function f : Rd → R.

1. f is convex and L-smooth with respect to ∥·∥.

2. 0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L
2 ∥x− y∥2.

3. f(x) + ⟨∇f(x), y − x⟩+ 1
2L ∥∇f(x)−∇f(y)∥

2
∗ ≤ f(y).

4. 1
L ∥∇f(x)−∇f(y)∥

2
∗ ≤ ⟨∇f(x)−∇f(y), x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ L ∥x− y∥2.

Next, we detail the properties of strongly convex functions.

Theorem 39. (Nesterov, 2018, Theorem 2.1.10) If f : Rd → R is µ-strongly convex, then for any x, y ∈ Rd,

• f(y) ≤ f(x) + ⟨f(x), y − x⟩+ 1
2µ ∥∇f(x)−∇f(y)∥

2
∗.

• ⟨∇f(x)−∇f(y), x− y⟩ ≤ 1
µ ∥∇f(x)−∇f(y)∥

2
∗.

• µ ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥∗.

Finally, functions that are both smooth and strongly convex enjoy a number of relevant primal-dual properties.

Theorem 40. (Nesterov, 2018, Theorem 2.1.12) If f is both L-smooth and µ-strongly convex, then for any x, y ∈ Rd,

−⟨∇f(x), x− y⟩ = − µL
µ+L ∥x− y∥2 − 1

µ+L ∥∇f(x)−∇f(y)∥
2 − ⟨∇f(y), x− y⟩ . (47)

Lemma 41. Let f : Rd → R be µ-strongly convex and M -smooth. Then, we have for any w, v ∈ Rd,

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1

2(M + µ)
∥∇f(w)−∇f(v)∥22 +

µ

4
∥w − v∥22.

Proof. The function g = f − µ∥ · ∥22/2 is convex and M − µ smooth. Hence, we have by line 3 of Thm. 38 for any
w, v ∈ Rd,

g(v) ≥ g(w) +∇g(w)⊤(v − w) +
1

2(M − µ)
∥∇g(v)−∇g(w)∥22.

Expanding g and ∇g, we get

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µM

2(M − µ)
∥w − v∥22 −

µ

M − µ
(∇f(w)−∇f(v))⊤(w − v).

Using Young’s inequality, that is, a⊤b ≤ α
2 ∥a∥22 + α−1

2 ∥b∥22, we have

f(v) ≥ f(w) +∇f(w)⊤(v − w) +
1− αµ

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µ(M − α−1)

2(M − µ)
∥w − v∥22.

Taking α = 2
µ+M gives the claim.

We state a few properties of the prox operator.

Theorem 42 (Co-coercivity of the prox). If f : Rd → R is µ-strongly convex, then we have for any constant η > 0 that

⟨x− y,proxηf (x)− proxηf (y)⟩ ≥ (1 + ηµ)
∥∥proxηf (x)− proxηf (y)

∥∥2 .

The same result applied to the convex conjugate f⋆ of f and noting that∇Mη[f](x) = proxf⋆/η(x/η) gives the following
result:

Theorem 43 (Co-coercivity of the prox). If f : Rd → R is L-smooth, then we have for any constant η > 0 that

⟨x− y,∇Mη[f](x)−∇Mη[f](y)⟩ ≥ η

(
1 +

1

Lη

)
∥∇Mη[f](x)−∇Mη[f](y)∥2 .

Lemma 44 ((Blondel et al., 2020, Lemma 4)). For a convex function f : R→ R, if x1 ≥ x2 and y2 ≥ y1, then

f(y1 − x1) + f(y2 − x2) ≥ f(y2 − x1) + f(y1 − x2).

Lemma 45. Define for l ∈ Rn,

h(l) = max
q∈P(σ)

l⊤q − ν̄

2
∥q − 1n/n∥22.

The function h is 1/ν̄-smooth and convex such that for any l, l′ ∈ Rn,

ν̄∥∇h(l)−∇h(l′)∥22 ≤ (∇h(l)−∇h(l′))⊤(l − l′) ≤ 1

ν̄
∥l − l′∥22.

H. Experimental Details
H.1. Tasks & Objectives

In all settings, we consider supervised learning tasks specified by losses of the form

ℓi(w) = h(yi, w
⊤φ(xi)),

where we consider an input xi ∈ X, a feature map φ : X→ Rd, and a label yi ∈ Y. The function h : Y×R→ R measures
the error between the true label and another value which is the prediction in regression and the logit probabilities of the
associated classes in classification. In the regression tasks, Y = R and we used the squared loss

ℓi(w) =
1

2
(yi − w⊤ϕ(xi))

2 .

Dataset d ntrain ntest Task Source
yacht 6 244 62 Regression UCI

energy 8 614 154 Regression UCI

concrete 8 824 206 Regression UCI

kin8nm 8 6,553 1,639 Regression OpenML

power 4 7,654 1,914 Regression UCI

diabetes 33 4,000 1,000 Binary Classification Fairlearn

acsincome 202 4,000 1,000 Regression Fairlearn

amazon 535 10,000 10,000 Multiclass Classification WILDS

iwildcam 9420 20,000 5,000 Multiclass Classification WILDS

Table 2: Dataset attributes and dimensionality d, train sample size ntrain, and test sample size ntest.

For binary classification, we have Y = {−1, 1}, denoting a negative and positive class. We used the binary logistic loss

ℓi(w) = −yix⊤
i w + ln(1 + ex

⊤
i w) .

For multiclass classification, Y = {1, . . . , C} where C is the number of classes. We used the multinomial logistic loss:

ℓi(w) = − ln pyi(xi;w), where pyi(xi;w) :=
exp

(
w⊤

·yxi

)
∑C

y′=1 exp
(
w⊤

·y′xi

) , w ∈ Rd×C

The design matrix (φ(x1), . . . , φ(xn)) ∈ Rn×d is standardized to have columns with zero mean and unit variance, and the
estimated mean and variance from the training set is used to standardize the test sets as well. Our final objectives are of the
form

Lσ(w) = max
q∈P(σ)

n∑
i=1

qiℓi(w)− νn ∥q − 1n/n∥22 +
µ

2
∥w∥22

for shift cost ν ≥ 0 and regularization constant µ ≥ 0.

H.2. Datasets

We detail the datasets used in the experiments. If not specified below, the input space X = Rd and φ is the identity map.
The sample sizes, dimensions, and source of the datasets are summarized in Tab. 2, where d refers to the dimension of each
φ(xi).

(a) yacht: prediction of the residuary resistance of a sailing yacht based on its physical attributes (Tsanas & Xifara,
2012).

(b) energy: prediction of the cooling load of a building based on its physical attributes (Baressi Segota et al., 2020).
(c) concrete: prediction of the compressive strength of a concrete type based on its physical and chemical attributes

(Yeh, 2006).
(d) kin8nm: prediction of the distance of an 8 link all-revolute robot arm to a spatial endpoint (Akujuobi & Zhang, 2017).
(e) power: prediction of net hourly electrical energy output of a power plant given environmental factors (Tüfekci, 2014).
(f) diabetes: prediction of readmission for diabetes patients based on 10 years worth of clinical care data at 130 US

hospitals (Rizvi et al., 2014).
(g) acsincome: prediction of income of US adults given features compiled from the American Community Survey

(ACS) Public Use Microdata Sample (PUMS) (Ding et al., 2021).
(h) amazon: prediction of the review score of a sentence taken from Amazon products. Each input x ∈ X is a sentence in

natural language and the feature map φ(x) ∈ Rd is generated by the following steps:

• A BERT neural network (Devlin et al., 2019) (fine-tuned on 10, 000 held-out examples) is applied to the text xi,
resulting in vector x′

i.

• The x′
1, . . . , x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in 105 components that explain 99% of the variance,
resulting in vectors x′′

i ∈ R105. The d in Tab. 2 refers to the total dimension of the parameter vectors for all 5
classes.

(i) iwildcam: prediction of an animal or flora in an image from wilderness camera traps, with heterogeneity in illumi-
nation, camera angle, background, vegetation, color, and relative animal frequencies (Beery et al., 2020). Each input
x ∈ X is an image the feature map φ(x) ∈ Rd is generated by the following steps:

• A ResNet50 neural network (He et al., 2016) that is pretrained on ImageNet (Deng et al., 2009) is applied to the
image xi, resulting in vector x′

i.

• The x′
1, . . . , x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in d = 157 components that explain 99% of the
variance. The d in Tab. 2 refers to the total dimension of the parameter vectors for all 60 classes.

H.3. Hyperparameter Selection

We fix a minibatch size of 64 SGD and SRDA and an epoch length of N = n for LSVRG. For SaddleSAGA we consider
three schemes for selecting the primal and dual learning rates that reduce to searching for a single parameter η > 0, as
described in Appx. I. In practice, the regularization parameter µ and shift cost ν are tuned by a statistical metric, i.e.
generalization error as measured on a validation set. We study the optimization performance of the methods for multiple
values of each in Appx. I.

For the tuned hyperparameters, we use the following method. Let k ∈ {1, . . . ,K} be a seed that determines algorithmic
randomness. This corresponds to sampling a minibatch without replacement for SGD and SRDA and a single sampled
index for SaddleSAGA, LSVRG, and SpecSAGA. Letting Lk(η) denote the average value of the training loss of the last
ten passes using learning rate η and seed k, the quantity L(η) = 1

K

∑K
k=1 Lk(η) was minimized to select η. The learning

rate η is chosen in the set {1×10−4, 3×10−4, 1×10−3, 3×10−3, 1×10−2, 3×10−2, 1×10−1, 3×10−1, 1×100, 3×100},
with two orders of magnitude lower numbers used in acsincome due to its sparsity. We discard any learning rates that
cause the optimizer to diverge for any seed.

H.4. Compute Environment

No GPUs were used in the study; Experiments were run on a CPU workstation with an Intel i9 processor, a clock speed of
2.80GHz, 32 virtual cores, and 126G of memory. The code used in this project was written in Python 3 using the PyTorch
and Numba packages for automatic differentiation and just-in-time compilation, respectively.

I. Additional Experiments
Varying Risk Parameters. We study the effect of varying the risk parameters, that is (p, b, γ) for the p-superquantile,
b-extremile, γ-ESRM, choosing spectral to increase the condition number κσ = nσn compared to the experiments in the
main text. We use p = 0.25, b = 2.5, and γ = 1/e−2 to generate “hard” version of the superquantile, extremile, and ESRM.
Fig. 6 plots the corresponding training curves for four datasets of varying sample sizes: yacht, energy, concrete, and
iwildcam. We see that the comparison of methods is the same as the original methods, that is that SpecSAGA performs
the best or close to best in terms of optimization trajectories. Except on concrete, SaddleSAGA generally matches the
performance of SpecSAGA. The trajectory of LSVRG is noticeably noisier than on the original settings; we hypothesize
that the bias accrued by this epoch-based algorithm is exacerbated by the skewness in the spectrum, as mentioned in Mehta
et al. (2023, Proposition 1).

Lowering or Removing Shift Cost. A relevant setting is the low or no shift cost regime, as this allows the adversary to
make arbitrary distribution shifts (while still constrained to P(σ)). These settings correspond to ν = 10−3 and ν = 0,
respectively. The low-cost experiment is displayed in Fig. 7 while Fig. 8 displays these curves for the no-cost experiment.

10−7

10−4

10−1

S
up

er
qu

an
ti

le
(H

ar
d)

yacht

10−7

10−4

10−1

energy

10−7

10−4

10−1

concrete

10−2

10−1

100
iwildcam

10−7

10−5

10−3

10−1

E
xt

re
m

ile
(H

ar
d)

10−7

10−4

10−1

10−7

10−4

10−1

10−2

10−1

100

0 16 32 48 64
Passes

10−7

10−5

10−3

10−1

E
S

R
M

(H
ar

d)

0 16 32 48 64
Passes

10−8

10−5

10−2

0 16 32 48 64
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−2

10−1

100

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 6: Harder risk parameter settings. Each row represents a different “hard” variant of the superquantile, extremile,
and ESRM spectra. Columns represent different datasets. Suboptimality (6) is measured on the y-axis while the x-axis
measures the total number of gradient evaluations made divided by n, i.e. the number of passes through the training set.

When ν = 0, the optimization problem can equivalently be written as

min
w∈Rd

[
max

q∈P(σ)
q⊤ℓ(w) +

µ

2
∥w∥22 =

n∑
i=1

σiℓ(i)(w) +
µ

2
∥w∥22

]
.

In this case, we always have that qopt(l) = (σπ−1(1), . . . , σπ−1(n)), where π sorts l. Here, w is chosen to optimize a linear
combination of order statistics of the losses. In the low shift cost settings, performance trends are qualitatively similar to
those seen from ν = 1. Interestingly, for the no-cost setting, LSVRG, SaddleSAGA, and SpecSAGA seem to converge
linearly empirically even without smoothness of the objective.

Lowering Regularization. Next, we decrease the ℓ2-regularization from µ = 1/n to µ = 1/(10n) and µ = 1/(100n).
These settings are plotted in Fig. 9 and Fig. 10, respectively. Performance rankings among methods reflect those of
the original parameters. For five of the six datasets, that is yacht, energy, concrete, kin8nm, and power, the
regression tasks involve optimizing the squared error. This function is already strongly convex, with constant depending on
the smallest eigenvalue of the empirical second moment matrix. When assuming that the input data vectors are bounded,
this function is also G-Lipschitz. Thus, if the problem is already well-conditioned, we may observe similar behavior even
at negligible regularization (µ = 5 · 10−7 for iwildcam, for example).

Comparison of Saddle-Point and Moreau Variants. Finally, observe in Fig. 11 the comparison of SaddleSAGA variants
(Appx. E), as well as the Moreau version of SpecSAGA using Moreau envelope-based oracles (Appx. F). There are variants
shown.

• Primal LR = Dual LR: The original variant of Palaniappan & Bach (2016), in which the primal and dual learning
rates are set to be equal and searched as a single hyperparameter.

• Search Dual LR: Here, the primal learning rate is fixed as the optimal one for SpecSAGA, and the dual learning rate
is searched as a single hyperparameter.

10−3

10−1

S
up

er
qu

an
ti

le

yacht

10−3

10−1

energy

10−4

10−2

100
concrete

10−7

10−4

10−1

kin8nm

10−7

10−4

10−1

power

10−2

10−1

100
iwildcam

10−6

10−4

10−2

100

E
xt

re
m

ile

10−7

10−5

10−3

10−1

10−7

10−5

10−3

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

10−2

10−1

100

0 16 32 48 64
Passes

10−6

10−4

10−2

100

E
S

R
M

0 16 32 48 64
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−2

10−1

100

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 7: Low shift cost settings. Each row represents a different spectral risk objective with ν = 10−3 (instead of ν = 1)
while each column represents a different datasets. Suboptimality (6) is measured on the y-axis while the x-axis measures
the total number of gradient evaluations made divided by n, i.e. the number of passes through the training set.

• Primal-Dual Heuristic: In this version, used as the “SaddleSAGA” baseline in the main text, the dual learning rate
is set to be 10n times smaller than the primal learning rate.

• SpecSAGA-Moreau: The Moreau-envelope version of SpecSAGA using proximal oracles.

We find that all methods besides the original variant (primal LR = dual LR) perform comparably on yacht, energy,
concrete, kin8nm, and power. Notably, the ProxSAGA method performs similarly to SpecSAGA and the saddle
point-based baselines. While using the Moreau envelope results in accelerated rates in the ERM setting (Defazio, 2016),
we find that the convergence rate is the same empirically. This phenomenon is in agreement with Thm. 35, which states that
ProxSAGA will achieve the same linear convergence rate as SpecSAGA, but will require a much less stringent condition
on the shift cost ν than in the case of SpecSAGA.

10−3

10−1

S
up

er
qu

an
ti

le

yacht

10−3

10−1

energy

10−4

10−2

100
concrete

10−6

10−4

10−2

100
kin8nm

10−7

10−4

10−1

power

10−2

10−1

100
iwildcam

10−6

10−4

10−2

100

E
xt

re
m

ile

10−7

10−4

10−1

10−7

10−5

10−3

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

10−2

10−1

100

0 16 32 48 64
Passes

10−6

10−4

10−2

100

E
S

R
M

0 16 32 48 64
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−2

10−1

100

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 8: No shift cost settings. Each row represents a different spectral risk objective with ν = 0 (instead of ν = 1)
while each column represents a different datasets. Suboptimality (6) is measured on the y-axis while the x-axis measures
the total number of gradient evaluations made divided by n, i.e. the number of passes through the training set.

10−6

10−4

10−2

100

S
up

er
qu

an
ti

le

yacht

10−6

10−4

10−2

100
energy

10−7

10−4

10−1

concrete

10−7

10−5

10−3

10−1

kin8nm

10−7

10−4

10−1

power

10−2

10−1

100
iwildcam

10−6

10−4

10−2

100

E
xt

re
m

ile

10−6

10−4

10−2

100

10−7

10−4

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

10−2

10−1

100

0 16 32 48 64
Passes

10−7

10−4

10−1

E
S

R
M

0 16 32 48 64
Passes

10−6

10−4

10−2

100

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−2

10−1

100

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 9: Reduced ℓ2-regularization settings (µ = 1/(10n). Each row represents a different spectral risk objective with
µ = 1/(10n) (instead of µ = 1/n) while each column represents a different dataset. Suboptimality (6) is measured on the
y-axis while the x-axis measures the total number of gradient evaluations made divided by n, i.e. the number of passes
through the training set.

10−6

10−4

10−2

100

S
up

er
qu

an
ti

le

yacht

10−6

10−4

10−2

100
energy

10−7

10−4

10−1

concrete

10−7

10−5

10−3

10−1

kin8nm

10−7

10−4

10−1

power

10−2

10−1

100
iwildcam

10−6

10−4

10−2

100

E
xt

re
m

ile

10−6

10−4

10−2

100

10−7

10−4

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

10−2

10−1

100

0 16 32 48 64
Passes

10−7

10−4

10−1

E
S

R
M

0 16 32 48 64
Passes

10−6

10−4

10−2

100

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−2

10−1

100

SGD SRDA LSVRG SaddleSAGA SpecSAGA (Ours)

Figure 10: Low ℓ2-regularization settings (µ = 1/(100n). Each row represents a different spectral risk objective with
µ = 1/(100n) (instead of µ = 1/n) while each column represents a different dataset. Suboptimality (6) is measured on
the y-axis while the x-axis measures the total number of gradient evaluations made divided by n, i.e. the number of passes
through the training set.

10−7

10−4

10−1

S
up

er
qu

an
ti

le

yacht

10−9

10−6

10−3

100
energy

10−7

10−4

10−1

concrete

10−7

10−5

10−3

10−1

kin8nm

10−7

10−4

10−1

power

10−7

10−4

10−1

E
xt

re
m

ile

10−9

10−6

10−3

100

10−7

10−4

10−1

10−7

10−5

10−3

10−1

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

E
S

R
M

0 16 32 48 64
Passes

10−7

10−4

10−1

0 16 32 48 64
Passes

10−7

10−4

10−1

0 8 16 24 32
Passes

10−7

10−5

10−3

10−1

0 8 16 24 32
Passes

10−7

10−4

10−1

Search Dual LR Primal LR = Dual LR Primal-Dual Heuristic SpecSAGA-Moreau SpecSAGA (Ours)

Figure 11: SaddleSAGA and SpecSAGA-Moreau method comparisons. Each row represents a different spectral risk
objective while each column represents a different dataset. Suboptimality (6) is measured on the y-axis while the x-axis
measures the total number of gradient evaluations made divided by n, i.e. the number of passes through the training set.

	Introduction
	Problem Setup
	The SpecSAGA Algorithm
	Towards Broader Shifts: f-Divergences and Hidden Smoothness
	Experiments
	Tabular Least-Squares Regression
	Fair Classification and Regression
	Image & Text Classification with Distribution Shift

	Discussion
	Appendix
	 Appendix
	Summary of Notation
	Properties of the Primal and Dual Objectives
	Efficient Implementation of SpecSAGA
	Convergence Analysis of SpecSAGA
	Convergence Analysis for Large Shift Cost
	Convergence Analysis for Alternate Norms
	Convergence Analysis for Any Shift Cost

	SaddleSAGA: Tackling the Saddle Point Problem Directly
	Convergence proof

	Improving SpecSAGA with Moreau Envelopes
	Convergence Analysis

	Technical Results from Convex Analysis
	Experimental Details
	Tasks & Objectives
	Datasets
	Hyperparameter Selection
	Compute Environment

	Additional Experiments

