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A Refresher on Reinforcement Learning
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Regularized optimization objective: d” : offline data visitation
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A Refresher on Reinforcement Learning
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Reinforcement Learning as a Linear Program

We can rewrite the problem as a convex optimization problem (CoP):

Primal-Q: max E; ,)[r(s,a)] — Ds(d (s, a)||d°(s, a))
T,d=0 ’

st. d(s,a) =1 —y)do(s)m(als) +y Xs q d(s’,a")p(s|s’,a’)m(als)

Constrains the visitation distribution d to be valid
Called Bellman Flow constraint

Manne, 1960



Lagrangian Dual without Constraints

* Define operator

TT[Q Q (St’ at) — r(St’ at) + IESt+1~p,at+1~7TQ [yQ (St+1’ at+1)]

Dual-Q: maxmin(1 = y)Eq, (5)n(als) [Q(s, )] + aEg g_go[f*([T7Q(s, @) = Q(s, )] /)]

where f ™ is the convex conjugate of f



Dual-Q is overconstrained

Primal-V : max Eqes,a)[r(s, )] — aDs(d(s, a)||d? (s, a))

st. Yaead(s,a) = (1 —y)do(s) +y Xsrad(s’,a)p(sls’,a’)
* Define operator:

TV (se, ar) =1(se,ae) + [Est+1~p(st,at) [V (st+1)]

dual-V: mVin(l —V)Eqg, [V (s)] + akg ;. q0 [f*([TV(s,a) —V(s)]/a)]

Single-player non-adversarial optimization



Gives rise to RElaxed Coverage for Off-policy Imitation Learning
(ReCOIL): Imitation from arbitrary experience

o Consider the f-divergence between the mixture distributions:

Df(Bd(s,a) + (1 — B)d®(s,a) || BdE(s,a) + (1 — B)d®(s,a))

S E,S
dmix dmix

Is a valid imitation learning objective: shares the same global minima as traditional
objective (d = dF)

: .. dS(s, . : : : :
« Avoids estimating dEg Z; which is ill-defined in state-action space with zero expert

support.

dF : expert data visitation, d° suboptimal data visitation



ReCOIL: Imitation from arbitrary experience

Primal-V with the mixture distributions:

Primal-V:

s.t.

max —Dj (dpyix (s, @)||d5r?, (5, @)

mix [
d>0 mix

Yaead(s,a) = (1 =y)do(s) + ¥ Xsra d(s’,a")p(sls’,a’)

Dual for Primal-V with mixture distributions:

\_

ReCOIL-V

~

min B(1L = V)Ea,(o V()] + B, ,_zs [TV (s,@) = V()] = (1= B B, ,_4s[TV(s,0) = V(5)]
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What is ReCOIL doing behind the scenes?| Intuition

ReCOIL is just a Bellman-Consistent EBM.

Input ReCOIL Output

I Expert state-action score  Learned score function

Offline Data Expert Data Learned Policy

E ﬁ l Replay state-action score m
+ B Non-expert
+/ Bellman consistency B Expert

w—) argmax,Q(s,a)



ReCOIL: Imitation from arbitrary experience

-
ReCOIL-Q max 1min Sl —7)Ed(),n(ale) Q5 )] + B, o goyn £ (T Q(s,0) — Q(s, )]
L — (1 = B)Es,anar[Tq" Q(s, a) — Q(s, a)]
-
ReCOIL-V 1‘51(13 B(L=MEay(s) V()] +E, , 422 [f5(ToV(s,a) = V(s))]
\ - (1 - rB)IEs,aNdR [75V(s,a) - V(S)]
Key features:

v Non-adversarial

v/ ReCOIL-V is a single player optimization instead of a game.
v Does not require learning a discriminator.

V Relaxes the coverage assumption

v Works for arbitrary f-divergence

10



Offline IL experiments: ReCOIL

Locomotion

Manipulation

Suboptimal Dataset | Env | RCE | ORIL | SMODICE | ReCOIL
random+ hopper 51.41+38.63 | 73.93+11.06 | 101.61+7.69 | 108.18+3.28
halfcheetah | 64.19+11.06 | 60.49+3.53 80.16+7.30 80.20+6.61
expert walker2d 20.90+26.80 2.86+3.39 | 105.86+3.47 | 102.16+7.19
ant 105.38+14.15 | 73.67+12.69 | 126.78+5.12 | 126.74+4.63
random+ hopper 2531+18.97 | 42.04+13.76 | 60.11+18.28 | 97.85+17.89
halfcheetah 2.99+1.07 2.84+5.52 2.28+0.62 76.92+7.53
few-expert walker2d 40.49+26.52 3.224+3.29 107.18+1.87 | 83.23+19.00
ant 67.62+15.81 | 2541 +8.58 | -6.10+7.85 67.14+ 8.30
medium+ hopper 58.71+34.06 | 61.68+7.61 49.74+3.62 | 88.51+16.73
halfcheetah | 65.14+13.82 | 54.66+0.88 | 59.50+0.82 81.15+2.84
expert walker2d 96.24+14.04 8.19+7.70 2.62+0.93 108.54+1.81
ant 86.14+38.59 | 102.74+6.63 | 104.95+6.43 | 120.36+7.67
medinm hopper 66.15+35.16 | 17.40+15.15 | 47.61+7.08 | 50.01+10.36
halfcheetah | 61.14+18.31 43.24+0.75 | 46.45+3.12 75.96+4.54
few-expert walker2d 85.28+34.90 6.811+6.76 6.00+6.69 91.25+17.63
ant 67.95+36.78 | 81.53+8.618 | 81.53+8.618 | 110.38+10.96
pen 19.60+11.40 | -3.10+0.40 -3.36+0.71 95.04+4.48
cloned+expert door 0.08+ 0.15 -0.33+0.01 0.25+ 0.54 102.75+4.05
pe hammer 1.95+3.89 0.25+ 0.01 0.15+ 0.078 | 95.77+17.90
relocate -0.25+0.04 -0.29+0.01 1.75+3.85 67.43+14.60
pen 17.81+5.91 -3.38+2.29 -2.20+£2.40 103.72+2.90
human+expert door -0.05+0.05 -0.33+0.01 -0.20+ 0.11 104.70+0.55
P hammer 5.00+5.64 1.89+0.70 -0.07+0.39 125.19+3.29
relocate 0.02+0.10 -0.29+0.01 -0.16+0.04 91.98+ 2.89
partial+expert | kitchen | 6.875+9.24 | 0.00+0.00 | 39.16+ 1.17 | 60.0+5.70
mixed+expert | kitchen | 1.66+235 | 0.00+0.00 | 42.5+2.04 | 52.0+1.0

Table 2: The normalized return obtained by different offline IL methods trained

on the D4RL suboptimal datasets with 1000 expert transitions.

Methods based on coverage assumption
fail when coverage is low (few expert
trajectories in dataset),

and

in high dimensional tasks where the
Discriminator easily overfits.

ReCOIL outperforms baselines by a large
margin!



Methods based on coverage assumption ‘almost’ learn to imitate
...but fail to recover from mistakes

Our method

hammer-
human-vO

relocate-
human-v0

RCE ORIL SMODICE ReCOIL



Methods based on coverage assumption ‘almost’ learn to imitate
...but fail to recover from mistakes

Our method

Environment: Kitchen-partial-v0

RCE ORIL SMODICE ReCOIL




Dual Formulation for Self-
Supervised Pre-training



Key Idea: Learning from Human Videos as a
BIG Offline Goal-Conditioned RL Problem

Offline Dataset:
Diverse Human Videos

s lZ vtr(o;g>] — Dxu(d™ (0,a";9)[[d” (0,3"; 9)),
TH, t

Mathematically Sound
What are human actions?
Can’t be optimized in practice

Human videos are rich sources of goal-directed behavior!



Offline Value Learning on Human Videos

Offline Dataset:
Diverse Human Videos

s lZ vtr(o;g>] — Dxu(d™ (0,a";9)[[d” (0,3"; 9)),
TH, t

Convex

Analysis

Dual Problem depends only on
offline data! No dependence on
actions!

maxmin Bp(g) [(1 = 7)Euo(09) [V ($(0); (9))] + Log Eo,orig)np [exp (7(0, 9) + 1V (6(0); $(9)) = V(9(0), ¢(9)))]]

goal frame initial frame middle frame



VIP: Towards Universal Visual Reward and
Representation Via Value-Implicit Pre-Training

Self-Supervised Diverse Visuomotor Control:

Goal-Conditioned Value Function Training Imitation, Trajectory Optimization, Online RL,
Few-Shot Real-World Offline RL

\‘ Ml_n f N . Z‘ltl

.
a®
““““
-
a®

Initial Middle Goal

Diverse, In-the-Wild Unlabeled Human Videos
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PickPlaceMelon & FoldTowel

VIP-RWR :100%) VIP-BC :50%) R3M-RWR (90%) R3M-BC |10%)

TR PTh
d-_i) (== P

)

VIP-RWR (90%) VIP-BC (50%) R3M-RWR (70%) R3M-BC (50%
7 = 5 o 7 7 7

g LG
; ' \ f !, % = 7 4 " :/’

W f
. y @7




Extended to Multimodal
Settings



This Work : Representations as Multi-Modal Value Functions

Language g

“Close
Microwave”
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Shaped Dense Reward:
R(0t41,0 9) = V*(¢(0t+1)}¢(9)) —V*(p(op); Y(9))

\ Ve(;9) V*(o; 9)

Embedding Distance 0.6

/lv:How can we effectively learn multi-

modal implicit value representations?



Language-Image Value Learning (LIV)

Theory: Combining VIP and CLIP objectives amounts to learning a multi-modal value
representation compatible with image and language goals

LIV Objective

- e “put down glass”
J\. )

Y Y

VIP cup

\




Language-Image Value Learning (LIV) Applications

SOTA results on pre-training, fine-tuning, and reward learning for language-conditioned

robotic manipulation

LIV Capabilities

Zero-shot Multi-Modal Reward Language_Reward MPC
Image Goal Language Goal: close the fridge

|

Language-Conditioned Imitation Learning

short, atomic tasks unseen, composite tasks




LIV performs best on all RealRobot tasks

-




Closing: Unifying existing work with dual RL

o Most successful techniques for offline RL:

Offline Reinforcement Learning

Policy Constraint Pessimistic Value function Implicit Maximization

Q(s,a) =r1(s,a) +ymax Q(s’,a")

Offline Agent

Ensure policy during training Ensure underestimation of Q for Ensure that the maximum is
stays close to replay buffer policy OOD actions in dataset taken over in-distribution actions

We show all these classes of prior methods come from a unified dual perspective! 25



Closing: Unifying existing work with dual RL

We show a number of prior methods in IL and RL to be dual RL methods! Some surprising ones are
CQL, Implicit Behavior Cloning, XQL, IQLearn.

‘ Dual RL Method Gradient Objective dual-Q/V Non-Adversarial? Off-Policy Data Coverage Assumption
| AlgaeDICE [56], GenDICE [81], CQL [43] semi reg. RL Q X Arbitrary —
RL OptiDICE [45] full reg. RL v v Arbitrary —
XQL [23], REPS [61], f-DVL semi reg. RL |4 v Arbitrary —
VIP [49], GoFAR [50] full reg. RL v v/ Arbitrary —
Logistic Q-learning [6] full reg. RL QV! v X —
IQLearn [22], IBC [15] semi Dy (p™| p¥) Q v Expert-only X
IVLearn semi Dy (p™| p¥) Vv v Expert-only X
OPOLO [82], OPIRL [32] semi D,u(p"| o) Q X Arbitrary v
ValueDICE [40] semi D,(p"| pF) Q X Arbitrary v/
IL SMODICE [48] full D, (p"| p") 1% v/ Arbitrary v
DemoDICE [38], LobsDICE [37] full Dyt (p™|pF) + aDpwi(p™|p") %4 v Arbitrary v/
P2IL [79] full De(p™| )" QV! X X X
ReCOIL-Q full Dy(Pel 050) Q X Arbitrary X
ReCOIL-V full Dy(pr | pER) 1% v Arbitrary X




To Summarize

o Dual RL provides a unifying perspective on imitation learning and
regularized reinforcement learning

e Givesrise to new IL and RL algorithms

e Can also be leveraged for pre-training representations and reward
functions in vision and multimodal settings
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