Dual RL: New Methods for Reinforcement and Imitation Learning

Amy Zhang Assistant Professor, UT Austin

A Refresher on Reinforcement Learning

State-action/ State visitation distribution: ∞

$$d^{\pi}(s,a) = (1-\gamma) \sum_{t=0}^{n} \gamma^{t} P(s_{t} = s, a_{t} = a | s_{0} \sim \rho_{0}, a_{t} \sim \pi(s_{t}), s_{t+1} \sim p(s_{t}, a_{t})).$$

Regularized optimization objective:

$$\max_{\pi} \mathbb{E}_{d^{\pi}(s,a)} \left[r(s,a) \right] - \alpha D_f(d^{\pi}(s,a) || d^o(s,a))$$

A Refresher on Reinforcement Learning

$$Q^*(s, a) = r(s, a) + \gamma \max_{a'} Q^*(s'(s, a), a')$$
$$V^*(s) = \max_{a} r(s, a) + \gamma V^*(s'(s, a))$$

Reinforcement Learning as a Linear Program

We can rewrite the problem as a convex optimization problem (CoP):

Primal-Q: $\max_{\pi,d\geq 0} \mathbb{E}_{d(s,a)}[r(s,a)] - D_f(d(s,a)||d^0(s,a))$

s.t. $d(s,a) = (1 - \gamma)d_0(s)\pi(a|s) + \gamma \sum_{s',a'} d(s',a')p(s|s',a')\pi(a|s)$

Constrains the visitation distribution *d* to be valid Called *Bellman Flow constraint*

Manne, 1960

Lagrangian Dual without Constraints

• Define operator

$$T^{\pi_Q}Q(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim p, a_{t+1} \sim \pi_Q}[\gamma Q(s_{t+1}, a_{t+1})]$$

Dual-Q: $\max_{\pi} \min_{Q} (1 - \gamma) \mathbb{E}_{d_0(s), \pi(a|s)} [Q(s, a)] + \alpha \mathbb{E}_{s, a \sim d^O} [f^*([T^{\pi}Q(s, a) - Q(s, a)]/\alpha)]$ where f^* is the convex conjugate of f

Dual-Q is overconstrained

Primal-V:
$$\max_{d \ge 0} \mathbb{E}_{d(s,a)}[r(s,a)] - \alpha D_f(d(s,a)||d^0(s,a))$$

s.t.
$$\sum_{a \in \mathcal{A}} d(s,a) = (1 - \gamma) d_0(s) + \gamma \sum_{s',a'} d(s',a') p(s|s',a')$$

• Define operator:

$$TV(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim p(s_t, a_t)} [V(s_{t+1})]$$

dual-V: $\min_{V}(1-\gamma)\mathbb{E}_{d_0(s)}[V(s)] + \alpha \mathbb{E}_{s,a \sim d^o}[f^*([TV(s,a) - V(s)]/\alpha)]$

Single-player non-adversarial optimization

Gives rise to RElaxed Coverage for Off-policy Imitation Learning (ReCOIL): Imitation from arbitrary experience

• Consider the f-divergence between the mixture distributions:

 $D_f(\beta d(s,a) + (1-\beta)d^S(s,a) \mid\mid \beta d^E(s,a) + (1-\beta)d^S(s,a))$

 $d_{mix}^{E,S}$

- Is a valid imitation learning objective: shares the same global minima as traditional objective ($d = d^E$)
- Avoids estimating $\frac{d^{S}(s,a)}{d^{E}(s,a)}$ which is ill-defined in state-action space with zero expert support.

 d^{E} : expert data visitation, d^{S} suboptimal data visitation

ReCOIL: Imitation from arbitrary experience

• Primal-V with the mixture distributions:

Primal-V:

$$\max_{d \ge 0} -D_f(d_{mix}^S(s,a)||d_{mix}^{E,S}(s,a))$$
s.t. $\sum_{a \in \mathcal{A}} d(s,a) = (1-\gamma)d_0(s) + \gamma \sum_{s',a'} d(s',a')p(s|s',a')$

• Dual for Primal-V with mixture distributions:

ReCOIL-V

 $\min_{V} \beta(1-\gamma) \mathbb{E}_{d_0(s)}[V(s)] + \alpha \mathbb{E}_{s, a \sim d_{mix}^{E, S}}[f^*(TV(s, a) - V(s))] - (1-\beta) \mathbb{E}_{s, a \sim d^S}[TV(s, a) - V(s)]$

What is ReCOIL doing behind the scenes? | Intuition

ReCOIL is just a Bellman-Consistent EBM.

ReCOIL: Imitation from arbitrary experience

ReCOIL-Q	$\max_{\pi(a s)} \min_{Q(s,a)} \beta(1-\gamma) \mathbb{E}_{d_0(s), \pi(a s)}[Q(s,a)] + \mathbb{E}_{s,a \sim d_{mix}^{E,R}} \left[f_p^*(\mathcal{T}_0^{\pi}Q(s,a) - Q(s,a)) \right]$
	$- (1-eta) \mathbb{E}_{s,a \sim d^R}[\mathcal{T}_0^{\pi}Q(s,a) - Q(s,a)]$

ReCOIL-V	$\min_{V(s)} \beta(1-\gamma) \mathbb{E}_{d_0(s)}[V(s)] + \mathbb{E}_{s,a \sim d_{mix}^{E,R}} \big[f_p^*(\mathcal{T}_0 V(s,a) - V(s)) \big]$
	$-(1-eta)\mathbb{E}_{s,a\sim d^R}[\mathcal{T}_0V(s,a)-V(s)]$

Key features:

Non-adversarial
 ReCOIL-V is a single player optimization instead of a game.
 Does not require learning a discriminator.
 Relaxes the coverage assumption
 Works for arbitrary f-divergence

Suboptimal Dataset	Env	RCE	ORIL	SMODICE	ReCOIL
random+	hopper	51.41±38.63	73.93±11.06	101.61±7.69	108.18±3.28
random+	halfcheetah	64.19±11.06	60.49±3.53	80.16±7.30	80.20±6.61
expert	walker2d	20.90 ± 26.80	2.86 ± 3.39	105.86 ± 3.47	102.16 ± 7.19
-	ant	$105.38{\pm}14.15$	73.67±12.69	$126.78{\pm}5.12$	126.74±4.63
random+	hopper	25.31±18.97	42.04±13.76	60.11±18.28	97.85±17.89
Tanuonit	halfcheetah	2.99 ± 1.07	2.84 ± 5.52	2.28 ± 0.62	76.92±7.53
few-expert	walker2d	40.49 ± 26.52	3.22 ± 3.29	107.18 ± 1.87	83.23 ± 19.00
-	ant	67.62±15.81	25.41 ± 8.58	-6.10±7.85	67.14± 8.30
medium+	hopper	58.71±34.06	61.68±7.61	49.74±3.62	88.51±16.73
medium+	halfcheetah	65.14 ± 13.82	54.66 ± 0.88	59.50±0.82	81.15±2.84
expert	walker2d	96.24±14.04	8.19±7.70	2.62 ± 0.93	108.54 ± 1.81
	ant	86.14 ± 38.59	102.74 ± 6.63	104.95 ± 6.43	120.36±7.67
medium	hopper	66.15±35.16	17.40±15.15	47.61±7.08	50.01±10.36
medium	halfcheetah	61.14 ± 18.31	43.24±0.75	46.45±3.12	75.96±4.54
few-expert	walker2d	85.28 ± 34.90	6.81±6.76	6.00±6.69	91.25±17.63
-	ant	67.95 ± 36.78	81.53 ± 8.618	$81.53 {\pm} 8.618$	110.38±10.9
	pen	19.60±11.40	-3.10±0.40	-3.36±0.71	95.04±4.48
alanad Larnart	door	0.08 ± 0.15	-0.33±0.01	0.25 ± 0.54	102.75 ± 4.05
cloned+expert	hammer	1.95 ± 3.89	0.25 ± 0.01	0.15 ± 0.078	95.77±17.90
	relocate	-0.25 ± 0.04	-0.29±0.01	1.75 ± 3.85	67.43±14.60
	pen	17.81±5.91	-3.38±2.29	-2.20 ± 2.40	103.72±2.90
human Lavnart	door	-0.05 ± 0.05	-0.33±0.01	-0.20 ± 0.11	104.70±0.55
human+expert	hammer	5.00 ± 5.64	1.89 ± 0.70	-0.07 ± 0.39	125.19±3.29
	relocate	$0.02{\pm}0.10$	-0.29 ± 0.01	-0.16 ± 0.04	91.98± 2.89
partial+expert	kitchen	6.875±9.24	0.00±0.00	39.16± 1.17	60.0±5.70
mixed+expert	kitchen	1.66+2.35	0.00±0.00	42.5+2.04	52.0±1.0

Offline IL experiments: ReCOIL

Table 2: The normalized return obtained by different offline IL methods trained on the D4RL suboptimal datasets with 1000 expert transitions.

Methods based on coverage assumption fail when coverage is low (few expert trajectories in dataset), and in high dimensional tasks where the Discriminator easily overfits.

ReCOIL outperforms baselines by a large margin!

Methods based on coverage assumption 'almost' learn to imitate ...but fail to recover from mistakes

Our method

RCE

ORIL

ReCOIL

Methods based on coverage assumption 'almost' learn to imitate ...but fail to recover from mistakes

Our method

Environment: Kitchen-partial-v0

RCE

ORIL

SMODICE

ReCOIL

Dual Formulation for Self-Supervised Pre-training

Key Idea: Learning from Human Videos as a BIG Offline Goal-Conditioned RL Problem

Offline Dataset: Diverse Human Videos

$$\max_{\pi_H,\phi} \mathbb{E}_{\pi^H}\left[\sum_t \gamma^t r(o;g)\right] - D_{\mathrm{KL}}(d^{\pi_H}(o,a^H;g) \| d^D(o,\tilde{a}^H;g)),$$

- Mathematically Sound
- What are human actions?
- Can't be optimized in practice

Human videos are rich sources of goal-directed behavior!

Offline Value Learning on Human Videos

VIP: Towards Universal Visual Reward and Representation Via **V**alue-Implicit **P**re-Training

CloseDrawer & PushBottle

VIP-RWR (90%)

VIP-BC (50%)

R3M-RWR (70%)

R3M-BC (50%)

PickPlaceMelon & FoldTowel

VIP-RWR (90%)

VIP-BC (50%)

R3M-RWR (70%)

R3M-BC (50%)

Extended to Multimodal Settings

This Work : Representations as Multi-Modal Value Functions

Language-Image Value Learning (LIV)

 Theory: Combining VIP and CLIP objectives amounts to learning a multi-modal value representation compatible with image and language goals

Language-Image Value Learning (LIV) Applications

• SOTA results on pre-training, fine-tuning, and reward learning for language-conditioned robotic manipulation

LIV performs best on all RealRobot tasks

Closing: Unifying existing work with dual RL

• Most successful techniques for offline RL:

We show all these classes of prior methods come from a unified dual perspective!

Closing: Unifying existing work with dual RL

We show a number of prior methods in IL and RL to be dual RL methods! Some surprising ones are CQL, Implicit Behavior Cloning, XQL, IQLearn.

	Dual RL Method	Gradient	Objective	dual-Q/V	Non-Adversarial?	Off-Policy Data	Coverage Assumption
RL	AlgaeDICE [56], GenDICE [81], CQL [43]	semi	reg. RL	Q	×	Arbitrary	_
	OptiDICE [45]	full	reg. RL	V	1	Arbitrary	_
	XQL [23], REPS [61], f-DVL	semi	reg. RL	V	1	Arbitrary	—
	VIP [49], GoFAR [50]	full	reg. RL	V	1	Arbitrary	—
	Logistic Q-learning [6]	full	reg. RL	QV^1	1	×	_
IL	IQLearn [22], IBC [15]	semi	$D_f(ho^{\pi} \ ho^E)$	Q	1	Expert-only	×
	IVLearn	semi	$D_f(ho^{\pi} \ ho^E)$	V	1	Expert-only	×
	OPOLO [82], OPIRL [32]	semi	$D_{rkl}(ho^{\pi} \ ho^{E})$	Q	×	Arbitrary	1
	ValueDICE [40]	semi	$D_{rkl}(ho^{\pi} \ ho^{E})$	Q	×	Arbitrary	1
	SMODICE [48]	full	$D_{rkl}(ho^{\pi} \ ho^{E})$	V	1	Arbitrary	1
	DemoDICE [38], LobsDICE [37]	full	$D_{rkl}(\rho^{\pi} \ \rho^E) + \alpha D_{rkl}(\rho^{\pi} \ \rho^R)$	V	1	Arbitrary	1
	P ² IL [79]	full	$D_C(ho^\pi \ ho^E)^1$	QV^1	×	×	X
	ReCOIL-Q	full	$D_f(ho_{mix}^{\pi} \ ho_{mix}^{E,R})$	Q	×	Arbitrary	×
	ReCOIL-V	full	$D_f(ho_{mix}^{\pi} \ ho_{mix}^{E,R})$	V	1	Arbitrary	×

To Summarize

- Dual RL provides a unifying perspective on imitation learning and regularized reinforcement learning
- Gives rise to new IL and RL algorithms
- Can also be leveraged for pre-training representations and reward functions in vision and multimodal settings
- 1. Dual RL: Unification and New Methods for Reinforcement and Imitation Learning. Harshit Sikchi, Qinqing Zheng, AZ, Scott Niekum. *In submission.*
- 2. VIP: Towards Universal Visual Reward and Representation via Value-Implicit Pre-Training, Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar*, AZ*. *ICLR 2023.*
- 3. LIV: Language-Image Representations and Rewards for Robotic Control. Yecheng Jason Ma · Vikash Kumar · AZ· Osbert Bastani · Dinesh Jayaraman. *ICML 2023*.

