A Dualistic View of Activations in Deep Neural Networks Ehsan Amid

Joint work with: Rohan Anil, Manfred Warmuth, Abel L. Peirson, Tomer Koren, Yatong Chen, Christopher Fifty, Vlad Fineberg

Overview

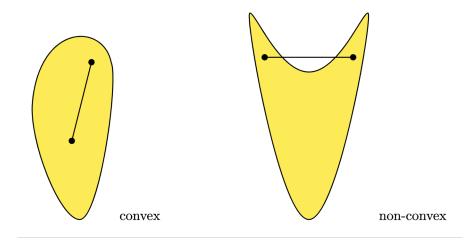
- Convexity and Duality
- A Dualistic View of Activations in DNNs
- Application
 - LocoProp: Local Loss Optimization [AISTATS22]
- Conclusions and Future Directions

Convexity and Duality

Convex Sets, Convex Functions, Legendre Dual, Bregman Divergence

Convex Sets and Convex Functions

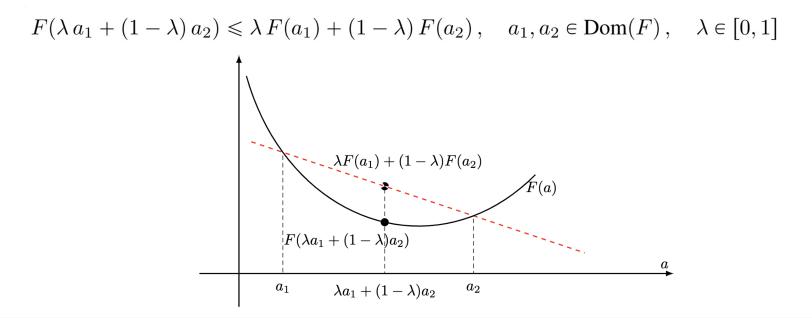
A **set** is **convex** if all the points along the line connecting two points inside the set are also belong to the set



Source code: https://tex.stackexchange.com/questions/639115/how-to-draw-convex-strictly-convex-and-nonconvex-sets

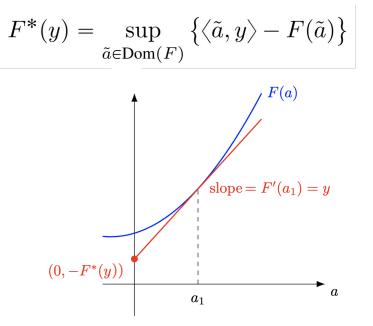
Convex Sets and Convex Functions

A function is **convex** if it has a convex domain and



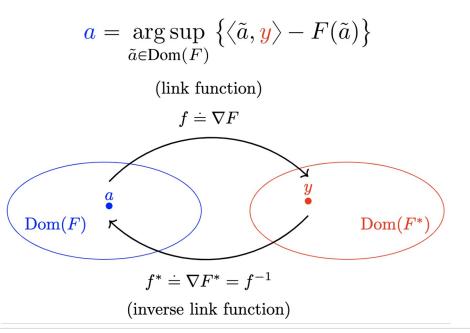
Legendre Dual

Given a (convex) function, the Legendre dual convex function is given by

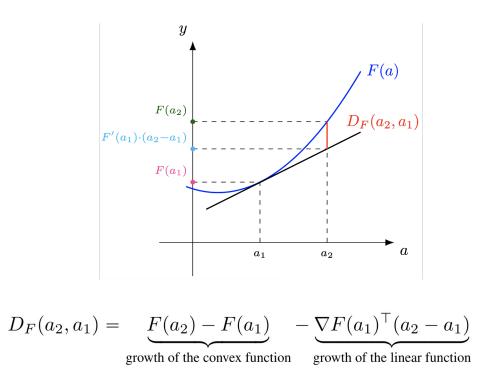


Legendre Dual

When F is strictly convex, we have the **dually coupled variables**:



Bregman Divergence: Definition



Bregman Divergence: Properties

Convexity: always in the left argument (not necessarily the right)

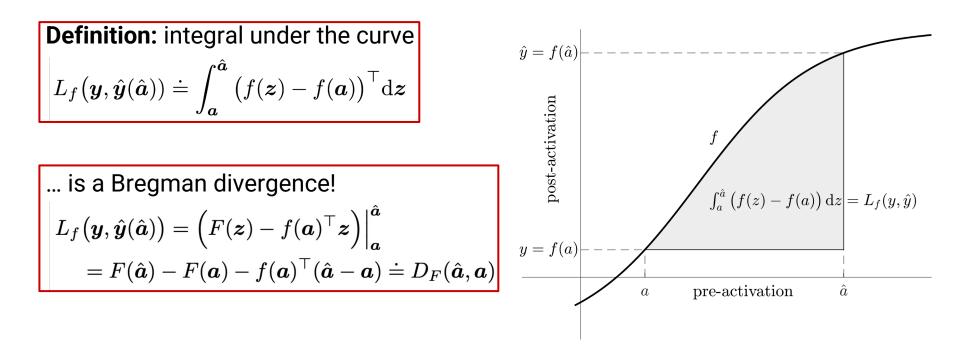
Non-negativity: $D_F(\hat{a}, a) \ge 0$ and $D_F(\hat{a}, a) = 0$ iff $\hat{a} = a$

Gradient: $\nabla_{\hat{a}} D_F(\hat{a}, a) = \nabla F(\hat{a}) - \nabla F(a)$

Many well-known cases:

Squared Euclidean:
$$D_F(\hat{\boldsymbol{a}}, \boldsymbol{a}) = \frac{1}{2} \|\hat{\boldsymbol{a}} - \boldsymbol{a}\|^2$$
 (with $F(\boldsymbol{a}) = \frac{1}{2} \|\boldsymbol{a}\|^2$)Relative Entropy: $D_F(\hat{\boldsymbol{a}}, \boldsymbol{a}) = \sum_i \{\hat{a}_i \log \frac{\hat{a}_i}{a_i} - \hat{a}_i + a_i\}$ (with $F(\boldsymbol{a}) = \sum_i \{a_i \log a_i - a_i\}$

Matching Loss: Definition



Matching Loss Example: Softmax \rightarrow KL Divergence

Link function:

$$\boldsymbol{y} = f(\boldsymbol{a}) = \operatorname{softmax}(\boldsymbol{a}) = \frac{\exp(\boldsymbol{a})}{\sum_{i} \exp(a_i)}$$

Integral function:

$$F(\boldsymbol{a}) = \log \sum_{i} \exp(a_i)$$

Matching loss (in terms of **post-activations**):

$$D_F(\hat{\boldsymbol{a}}, \boldsymbol{a}) = D_{F^*}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \sum_i y_i \log \frac{y_i}{\hat{y}_i}$$

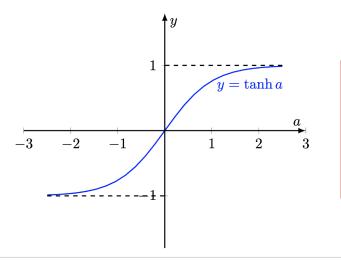
A Dualistic View of Activations in DNNs

The Role of Activation Functions

Which link functions are valid?

For f to be a "valid" link function (i.e., gradient of a strictly convex function):

- Needs to be strictly increasing in 1-D
- And cyclically strictly monotone in higher dimension

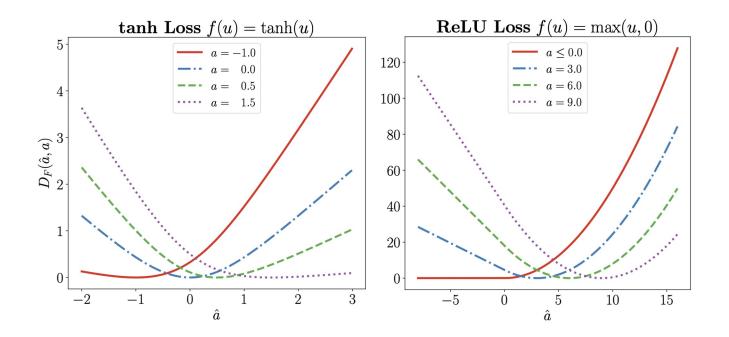


Many **activation functions** in modern neural networks (Linear, Leaky ReLU, tanh, sigmoid, softmax*, etc.) satisfy this property!

Matching Losses of Common Activation Functions

NAME	Transfer Function $f(a)$	Convex Integral Function $F(\boldsymbol{a})$	Note
STEP FUNCTION	$^{1/_{2}}(1+\mathrm{sign}(oldsymbol{a}))$	$\sum_i \max(a_i,0)$	_
LINEAR	a	$^{1}/_{2}\left\Vert oldsymbol{a} ight\Vert ^{2}$	_
(Leaky) ReLU	$\max(\boldsymbol{a},0) - \beta \max(-\boldsymbol{a},0)$	$^{1/2}\sum_{i}a_{i}ig(\max(a_{i},0)-eta\max(-a_{i},0)ig)$	$eta \geq 0$
SIGMOID	$(1+\exp(-\boldsymbol{a}))^{-1}$	$\sum_i ig(a_i + \log(1 + \exp(-a_i))ig)$	-
Softmax	$\exp(a) \big/ \sum_i \exp(a_i)$	$\log\sum_i \exp(a_i)$	_
Hyperbolic Tan	$ anh(oldsymbol{a})$	$\sum_i \log \cosh(a_i)$	_
Arc Tan	$\arctan(a)$	$\sum_i \left(a_i \arctan(a_i) - \log \sqrt{1 + a_i^2} ight)$	_
SoftPlus	$\log(1+\exp({m a}))$	$-\sum_i \mathrm{Li}_2(-\exp(a_i))$	$Li_2 \coloneqq SPENCE'S FUNC.$
ELU	$[f(oldsymbol{a})]_i = egin{cases} a_i & a_i \geq 0 \ eta(\exp a_i - 1) & ext{otherwise} \end{cases}$	$\sum_i \left(a_i^2/2 \mathbb{I}(a_i \geq 0) + eta(\exp a_i - a_i - 1) ight) \mathbb{I}(a_i < 0) ight)$	$eta \geq 0$

Matching Losses of Common Activation Functions



Application

LocoProp: Local Loss Optimization

Local Loss Optimization

LocoProp conceives neural networks as a modular composition of layers

Local Loss Optimization

Pre
$$\hat{\boldsymbol{a}}_m = \boldsymbol{W}_m \, \hat{\boldsymbol{y}}_{m-1}$$
 and **post** $\hat{\boldsymbol{y}}_m = f_m(\hat{\boldsymbol{a}}_m)$ activations in layer *m*

$$oldsymbol{W}^{ ext{new}} = rgmin_{\widetilde{oldsymbol{W}}} ig\{ \underbrace{D(\widetilde{oldsymbol{W}}\hat{oldsymbol{y}}_{m-1},oldsymbol{a}_m)}_{ ext{loss}} + \underbrace{R(\widetilde{oldsymbol{W}},oldsymbol{W})}_{ ext{regularizer}}ig\}$$

target
$$\boldsymbol{a}_m$$
 (or $\boldsymbol{y}_m = f_m(\boldsymbol{a}_m)$)

The Case of Squared Loss

Local regularized squared loss:

$$\begin{array}{c|c} 1/2 \|\widetilde{\boldsymbol{W}} \hat{\boldsymbol{y}}_{m-1} - \boldsymbol{a}_m \|^2 + 1/2\eta \|\widetilde{\boldsymbol{W}} - \boldsymbol{W}_m \|^2 \\ \text{loss to the target} & \text{keep the weight close} & \text{GD w.r.t. the final loss} \end{array}$$

Solution: fixed point equation

$$oldsymbol{W}_m^{ ext{new}} = oldsymbol{W}_m - \eta \left(oldsymbol{W}_m^{ ext{new}} \hat{oldsymbol{y}}_{m-1} - oldsymbol{a}_m
ight) \hat{oldsymbol{y}}_{m-1}^ op$$

The Case of Squared Loss

How about a single iteration?

$$\begin{split} \boldsymbol{W}_{m}^{\text{new}} \approx \boldsymbol{W}_{m} &- \eta \left(\boldsymbol{W}_{m} \hat{\boldsymbol{y}}_{m-1} - \boldsymbol{a}_{m} \right) \hat{\boldsymbol{y}}_{m-1}^{\top} \\ &= \boldsymbol{W}_{m} - \eta \left(\boldsymbol{W}_{m} \hat{\boldsymbol{y}}_{m-1} \\ &- \left(\boldsymbol{W}_{m} \hat{\boldsymbol{y}}_{m-1} - \gamma \nabla_{\hat{\boldsymbol{a}}_{m}} L(\boldsymbol{y}, \hat{\boldsymbol{y}}) \right) \right) \hat{\boldsymbol{y}}_{m-1}^{\top} \\ &= \boldsymbol{W}_{m} - \eta \gamma \nabla_{\hat{\boldsymbol{a}}_{m}} L(\boldsymbol{y}, \hat{\boldsymbol{y}}) \ \hat{\boldsymbol{y}}_{m-1}^{\top} \\ &= \boldsymbol{W}_{m} - \eta_{e} \frac{\partial L(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \boldsymbol{a}_{m}} \frac{\partial \hat{\boldsymbol{a}}_{m}}{\partial \boldsymbol{W}_{m}}. \end{split}$$
(BackProp)

This is just a single step of **BackProp**!

The Case of Squared Loss

$$oldsymbol{W}_m^{ ext{new}} = oldsymbol{W}_m - \eta \left(oldsymbol{W}_m^{ ext{new}} \hat{oldsymbol{y}}_{m-1} - oldsymbol{a}_m
ight) \hat{oldsymbol{y}}_{m-1}^ op$$

There is a closed-form solution:

$$\boldsymbol{W}_{m}^{\text{new}} = \boldsymbol{W}_{m} - \eta_{e} \nabla_{\boldsymbol{W}_{m}} L(\boldsymbol{y}, \hat{\boldsymbol{y}}) \left(\boldsymbol{I} + \eta \, \hat{\boldsymbol{y}}_{m-1} \hat{\boldsymbol{y}}_{m-1}^{\top}\right)^{-1}$$
gradient descent
preconditioner matrix

A preconditioned gradient descent!

Using Matching Losses

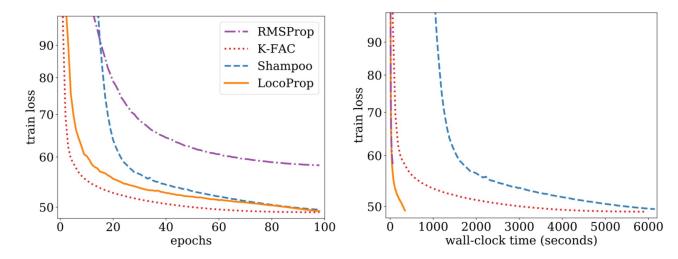
Replace the squared loss with the matching loss:

$$\begin{split} \boxed{1/2 \|\widetilde{\boldsymbol{W}}\hat{\boldsymbol{y}}_{m-1} - \boldsymbol{a}_{m}\|^{2}} + 1/2\eta \|\widetilde{\boldsymbol{W}} - \boldsymbol{W}_{m}\|^{2}} \quad \text{where} \quad \boldsymbol{a}_{m} = \hat{\boldsymbol{a}}_{m} - \gamma \nabla_{\hat{\boldsymbol{a}}_{m}} L(\boldsymbol{y}, \hat{\boldsymbol{y}}) \\ \hline \\ \boxed{D_{F_{m}^{*}}(\boldsymbol{y}_{m}), f_{m}(\widetilde{\boldsymbol{W}}\hat{\boldsymbol{y}}_{m-1}))} + 1/2\eta \|\widetilde{\boldsymbol{W}} - \boldsymbol{W}_{m}\|^{2}} \quad \text{where} \quad \underbrace{\boldsymbol{y}_{m} = \hat{\boldsymbol{y}}_{m} - \gamma \nabla_{\hat{\boldsymbol{a}}_{m}} L(\boldsymbol{y}, \hat{\boldsymbol{y}})}_{\text{MD w.r.t. the final loss}} \end{split}$$

Still convex in the **weights**, and yields a preconditioned update

Experiments

Results on the deep autoencoder benchmark



LocoProp performs competitive to second-order methods

Conclusions and Future Directions

Conclusions and Future Directions

Further applications:

- Layerwise Fisher approximation via local sampling [<u>NerIPS22-HITY</u>]
- Bregman knowledge distillation [TMLR23]
- Robust bi-tempered loss [NeurIPS19]

Future directions:

- No-sample layerwise Fisher approximation
- Extension to non-monotonic activations
- Low-rank compression of the weights
- Learning losses and activation functions

...