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Convexity and Duality

Convex Sets, Convex Functions, Legendre Dual, Bregman Divergence



Convex Sets and Convex Functions

A set is convex if all the points along the line connecting two points inside the
set are also belong to the set

convex non-convex
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Convex Sets and Convex Functions

A function is convex if it has a convex domain and

FAar + (1 =X az) < AF(a1)+ (1 —A) F(a2), ai,az € Dom(F), Xe|0,1]
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Legendre Dual

Given a (convex) function, the Legendre dual convex function is given by

F*(y)= sup {{a,y)—F(a)}

aeDom(F')

A F(a)

(0, —F*(y))

Y

ax
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Legendre Dual

When F'is strictly convex, we have the dually coupled variables:

a = argsup {<€L, Yy — F(&)}
aeDom(F)
(link function)

f=VF

f* ZVF* :f—l

(inverse link function)

‘b Google DeepMind A Dualistic View of Activations in Deep Neural Networks — Ehsan Amid



Bregman Divergence: Definition

F(a2)

F'(a1)-(az—a1)

F(al)‘

~

Dp(a,g,al) = F(a,g)—F(al) —YF(CLl)T(CLQ —a,l)

. i 7
R Bl

growth of the convex function  growth of the linear function
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Bregman Divergence: Properties

Convexity: always in the left argument (not necessarily the right)

Non-negativity: Dr(a,a) >0 and Dg(a,a)=0 iff a=a
Gradient: V;Dr(a,a) = VF(a)— VF(a)

Many well-known cases:
1
Squared Euclidean:  Dp(a,a) = —Hd —al?  (with F(a) = 1Ha,H2 )

Relative Entropy: Dr(a,a) Z{al log — —a; +a;}  (with F(a Z{aZ loga; —a;} )
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Matching Loss: Definition

Definition: integral under the curve

Li(y9(@) = [ (£(z) - (@) Tdz

a

post-activation

... is a Bregman divergence!

Ly (4,9(@) = (F(2) - f(@)72)|
= F(a) - F(a) - f(a)" (& — a) = Dr(a,a)

a
a

/ a pre-activation a
-
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Matching Loss Example: Softmax — KL Divergence

Link function:

exp(a)

2. exp(a;)

F(a) = logZ exp(a;)

y = f(a) = softmax(a) =

Integral function:

Matching loss (in terms of post-activations):

Dp(a,a) = Dpx(y Zyz log Az.
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A Dualistic View of Activations in
DNNs

The Role of Activation Functions



Which link functions are valid?

For f to be a “valid” link function (i.e., gradient of a strictly convex function):

e Needs to be strictly increasing in 1-D
e And cyclically strictly monotone in higher dimension

Ay

y = tanha Many activation functions
in modern neural networks
: : : : : % (Linear, Leaky RelLU, tanh,
-3 2 -1 2 3 sigmoid, softmax*, etc.)
satisfy this property!
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Matching Losses of Common Activation Functions

NAME TRANSFER FUNCTION f(a) CoNVEX INTEGRAL FUNCTION F'(a) NOTE

STEP FUNCTION 1/2(1 + sign(a)) >, max(ai,0) -

LINEAR a 1/2||al? ~

(LEAKY) RELU max(a,0) — fmax(—a,0) 1/2 37, ai( max(ai, 0) — Bmax(—as,0)) >0
SIGMOID (1 + exp(—a))™! >, (ai +log(1 + exp(—ai))) -

SOFTMAX exp(a)/s~. exp(a;) log >, exp(a;) -
HypPERBOLIC TAN tanh(a) >, logcosh(a;) -

ARrc TAN arctan(a) > (ai arctan(a;) — log /1 + a?) -
SorTPLUS log(1 + exp(a)) — >, Liz(—exp(a:)) Liz := SPENCE’S FUNC.
ELU [f(a)li = {;i(exp ai —1) ?)fl‘iE(I)tWISE >i (a/21(a; > 0) + B(expai — ai — 1)) I(a; < 0)) B=>0
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Matching Losses of Common Activation Functions

tanh Loss f(u) = tanh(u)

ReLU Loss f(u) = max(u,0)

a=-1.0
== a= 0.0
=== a= 0.5
..... a= 1.5
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Application

LocoProp: Local Loss Optimization



Local Loss Optimization

LocoProp conceives neural networks as a modular composition of layers
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Local Loss Optimization

Pre \a,, = W,, mm—1| and post 4, = f..(a,,) activations in layer m

Whew — arg min {D(‘Wﬁm_l\, a.,,|) + R(ﬁ;, W) }
W \ /N g v,

loss regularizer

target an, (Or Ym = fm(am))
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The Case of Squared Loss

Local regularized squared loss:

1/2 ”ng—1 -

Am

I*

_I_

Yo |W — Wi

loss to the target

Solution: fixed point equation

keep the weight close

new,
W,

Wm -1 (W;fwﬁm—l -

6 Google DeepMind

where

amy = a'm — ’YvdmL(y7g)

GD w.r.t. the final loss
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The Case of Squared Loss

How about a single iteration?

Wi — (Wm:‘?m—l - am) :’9;;—1
Wn

77
N (Winm—-1

— (WinBim-1—7Va, LY, 9))) Gm_1
=Wy =17 Va, LY, 9) 91

Q

new
W,

_ OL(y, ) Qétm
=W — 7 B, oW, | (BackProp)

This is just a single step of BackProp!
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The Case of Squared Loss

new,
W,

new,
W,

There is a closed-form solution:

Wi =W, —ne Vw,, L(y, 3?)“(1 + N Ym—1Um—1)

=1

gradient descent

A preconditioned gradient descent!

@ Google DeepMind

preconditioner matrix
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Using Matching Losses

Replace the squared loss with the matching loss:

V2 [Wihm—1 — am|®

1o ||W = Wp|>  where am = am — 7 Va. L(y,9)

Dr;, (Ym), fm(ﬁ//?)m—l

)

target post-activation

v @

+ 1/ |W — W,|I*  where |Ym = %im — ¥ Va, L(y,9)

MD w.r.t. the final
loss

Still convex in the weights, and yields a preconditioned update
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Experiments

Results on the deep autoencoder benchmark
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LocoProp performs competitive to second-order methods
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Conclusions and Future Directions



Conclusions and Future Directions

Further applications:

e Layerwise Fisher approximation via local sampling [NerIPS22-HITY]

e Bregman knowledge distillation [TMLR23]

e Robust bi-tempered loss [Neur|PS19]

Future directions:

e No-sample layerwise Fisher approximation
Extension to non-monotonic activations
Low-rank compression of the weights
Learning losses and activation functions
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