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Examples in ML
Generative models

inf
Gθ

𝔼Z𝒟(P, Gθ(Z)) = inf
μ∈ℳ

sup
f∈ℱ{∫ f(x)dP(x) − 𝔼θ∼μ ∫ f(gθ(z))dQ(z)}

Distributionally robust optimization

inf
θ

sup
MMD(μ, ̂μ)≤ϵ

𝔼μ[l(θ; x)] = inf
θ∈ℝd,f∈ℋ

sup
μ∈ℳ

𝔼μ(l − f ) +
1
N

N

∑
i=1

f(xi) + ϵ∥f∥ℋ.

Wasserstein barycenter

min
μ∈ℳ

n

∑
i=1

αi [Wp(μ, νi)] = min
μ∈ℳ

n

∑
i=1

αi sup
fi∈Ψc

{∫ f c
i dμ + ∫ fidνi},
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Distributional robustness, but what kind?

Figure credit: The Princess Bride, 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Why study new geometry?
New geometries leading to new fields of research and 
breakthroughs:
Information geometry [S. Amari et al.] e.g. descent in 
Fisher-Rao geometry
Wasserstein Gradient flow [F. Otto et al.] e.g. Fokker-
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hard cons.
relax.
MMD only
KL-MMD
Log-MMD
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Primal DRO (not solvable as it is) Example. Robust least squares  
[El Ghaoui Lebret ’97]

minimize l(θ, ξ) := ∥A(ξ) ⋅ θ − b∥2
2

Given historical samples ξ1, ξ2, …, ξN

(a) Robust least squares loss (b) Geometric interpretation

Figure 3: (a) This plot depicts the test loss of algorithms. All error bars are in standard error. We
ran 10 independent trials. In each trial, we solved K-DRO to obtain ✓ ⇤ and tested it on a test dataset
of 500 samples. We then vary the perturbation � from 0 to 4. (b) (red) is the dual optimal solution
f⇤

0 + f⇤. (black) is the function l(✓⇤, ·). The pink bars depict a worst-case distribution while the blue
bars the empirical distribution. We can observe that f⇤

0 + f⇤ touches loss l(✓⇤, ·) at the support of the
worst-case distribution P ⇤ (pink dots). Note f⇤ (normalized) can be viewed as a witness function of
the two distributions.

4 Numerical studies227

This section demonstrates the theoretical insights of K-DRO in action. It is not a benchmark of228

state-of-art performances. See the appendix for more results. The code will be available online229

4.1 Distributionally robust solution to uncertain least squares230

We first consider a robust least squares problem adapted from [17], which demonstrated an im-231

portant application of RO to statistical learning historically. (See also [9, Ch. 6.4].) The task232

is to minimize the objective kA✓ � bk22 w.r.t. ✓. A is modeled by A(⇠) = A0 + ⇠A1, where233

⇠ 2 X is uncertain, X = [�1, 1], and A0, A1 2 R10⇥10, b 2 R10 are given. We compare234

K-DRO against using (a) empirical risk minimization (ERM; also known as sample average ap-235

proximation) that minimizes 1
N

PN
i=1 kA(⇠i) ✓ � bk22, (b) worst-case RO via SDP from [17]. We236

consider a data-driven setting with given samples {⇠i}Ni=1. We formulate the K-DRO problem as237

min✓ maxP2P,µ2C E⇠⇠P kA(⇠) ✓� bk22 subject to
R
�dP = µ, where we choose the uncertainty238

set to be C = {µ : kµ� µP̂ kH  ✏}, where µP̂ =
PN

i=1
1
N �(⇠i).239

Empirical samples {⇠i}Ni=1(N = 10) are generated uniformly from [�0.5, 0.5]. We then apply K-240

DRO formulation (10). To test the solution, we create a distribution shift by generating test samples241

from [�0.5 · (1+�), 0.5 · (1+�)], where � is a perturbation varying within [0, 4]. Figure 3a shows242

this comparison. As the perturbation increases, ERM quickly lost robustness. On the other hand, RO243

is the most robust with the trade-off of being conservative. As expected, K-DRO achieves some level244

of optimality while retaining robustness. We then ran K-DRO with fewer empirical samples (N = 5)245

to show the geometric interpretations. We plot the optimal dual solution f⇤

0 + f⇤ in Figure 3b.246

Recall it is an over-estimator of the loss l(✓, ·). We solve (7) to obtain a worst-case distribution P ⇤.247

Comparing P ⇤ with P̂ , we can observe the adversarial behavior of the worst-case distribution. See248

the caption for more description.249

4.2 Distributionally robust classification250

We now show how kernel-DRO can be applied to train a classification model g✓ : x 7! y. We consider251

a two-dimensional (x 2 R2), two-class classification problem (y 2 {�1, 1}). Samples from class 1252

(red) are drawn from p(x|y = 1) = N ((5, 0)>, I), while that from class -1 (blue) are generated from253

N
�
(3, 1)>, diag(1/2, 2)

�
. The class prior probability is uniform i.e., p(y = �1) = p(y = 1) = 1/2.254

The training samples are shown in Figure 4a. The model is trained by solving K-DRO (10), where255

⇠i := [xi, yi], with the hinge loss l(✓, ⇠) := max(0, 1� g✓(x)y). We use a product kernel of the form256

k((x, y), (x0, y0)) = kX(x, x0)kY (y, y0), where both kX , kY are Gaussian kernels. For simplicity,257

we use a linear classifier g✓(x) := sign(m>x+ c) where ✓ := (m, c).258

7
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Dynamic: Duality of

Gradient Flow



From static DRO to JKO scheme for gradient flows

DRO’s Wasserstein measure optimization is not new.

min
◊

sup
W2(P,P̂)Æ‘

EP l(◊, ›)

min
◊

sup
P

EP l(◊, ›) ≠ “ · W 2

2 (P, P̂)

Wasserstein gradient flow [Otto et al. 90s-2000s]. The Fokker-Planck equation

ˆtµ + Ò · (µÒ
”F
”µ

[µ]) = 0

is the gradient-flow equation of energy F in (Prob(X̄ ), W2).

Jordan-Kinderlehrer-Otto (JKO) scheme or Minimizing Movement Scheme (MMS):

µk+1
œ inf

µœP
F (µ) + 1

2·
W 2

2 (µ, µk)

generalizes the DRO dual reformulation of DRO to nonlinear-in-measure F .
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Duality in gradient flow dynamics: nonlinear ODE

ẋ(t) = ≠Òf (x(t))

ẋ(t) œ X provides the rate (or velocity) (we can see)

≠Òf (x(t)) œ X ú provides the (thermodynamic) force (can’t see; shadow price)

The equation should be written in the force-balance form

IR ẋ(t) = ≠Òf (x(t)) œ X ú, IR : X æ X ú is the Riesz isomorphism.

If X � X ú: u̇ œ ˆRú(µ, ≠DF ) µ TuM (rate) vs 0 œ DF + ˆR(µ, µ̇) µ Tú
uM (force)

Energy dissipation balance (equality) via Fenchel(-Young) duality and optimality

d
dt f (x(t)) =Xú ÈÒf (x(t)), ẋÍX = ≠ÎÒf (x(t))Î2 = ≠

!1
2ÎẋÎ

2 + 1
2ÎÒf (x)Î2

"

Energy does not necessarily decrease along non-solutions, i.e., only inequality
d
dt f (z(t)) Ø ≠

!1
2ÎżÎ

2 + 1
2ÎÒf (z(t))Î2

"
.
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= ≠ÎÒf (x(t))Î2 = ≠
!1
2ÎẋÎ
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= ≠
!1
2ÎẋÎ
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ẋ(t) œ X provides the rate (or velocity) (we can see)

≠Òf (x(t)) œ X ú provides the (thermodynamic) force (can’t see; shadow price)

The equation should be written in the force-balance form
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Duality in the Wasserstein gradient flow

Wasserstein gradient flow in the rate form (primal; vs. force-balance)

ˆtµ = ≠KOtto(µ) DF

= Ò · (µÒDF ).

In (Prob(X̄ ), F , W2), Fenchel(-Young) duality yields the Energy dissipation balance

(equality) [Ambrosio et al. 2007]
d
dt F (µ(t)) = ≠

1
2 |µÕ

|W2
(t)2

≠
1
2 |Ò

≠F |W2
(µ(t))2

For (Boltzmann) entropy F (u) = fl log fl, the metric slope is

|Ò
≠F |W2

(µ(t))2 =
⁄

|Ò log fl|
2fl dx

However, for some nonlinear (in measure) energy (e.g., in variational inference)

F (µ) = DKL(µÎfi), ”F
”µ

[µ] = log fl ≠ log fi,

density fl := dµ
dL and force field ”F

”µ [µ] are not accessible if µ is atomic.
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Kernel gradient flow as dual space force-balance

Motivated by the “Kernel DRO-type” derivation in [Zhu et al.’21, Kremer et al.’23],

Proposition(informal). The gradient flow equation for (P(X̄ ), F , MMD) is given by the
dual space (force-balance) kernel gradient flow

k ú µ̇ = ≠g œ H, where Òg = Ò
”F
”µ

[µ] µ-a.e.

where convolution k ú µ :=
s k(x , ·)µ( dx). If F is entropy, Òg “matches the score” .

Compared with the Wasserstein GF of entropy, our kernel geometry approximates the
(unavailable) “score function” Òg = Ò log fl in a principled geometry.
This gives the interpretation of the dual kernel function in dynamics

g is the approximate (thermodynamic) force field.
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Back to (kernel) robust learning

Motivated by our insight so far, we have a “dynamic formulation” of the dual DRO

problem [Zhu et al. 2021]
min

◊
sup

MMD(P,P̂)Æ‘

EP l(◊, ›),

the distribution shift (a.k.a. adversarial attack) is modeled by the dynamical system of
the dual force-balance kernel gradient flow

k ú µ̇ = ≠g , µ(0) = P̂, µ(T ) = P.

where Òg(x) approximates the gradient Òl(◊, ›). (see also an alternative using kernel
mirror prox. [Dvurechensky & Zhu])
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• Energy that’s the integral of nonlinear functions or 
nonlinear in measures  

 

which are challenging for computation using the WGF 
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