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Distributional robustness, but what kind?
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DRO’s Wasserstein measure optimization is not new.
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P

Wasserstein gradient flow [Otto et al. 90s-2000s|. The Fokker-Planck equation

5F
Otpr + 'V - (MV@[M]) =0

is the gradient-flow equation of energy F in (Prob(X), W>).
Jordan-Kinderlehrer-Otto (JKQO) scheme or Minimizing Movement Scheme (MMS);

1
kT e inf F(u) A

W2 k
inf - W (pey 1)

generalizes the DRO dual reformulation of DRO to nonlinear-in-measure F.



Duality in gradient flow dynamics: nonlinear ODE

x(t) = —VI£(x(t))



Duality in gradient flow dynamics: nonlinear ODE

x(t) = —VI£(x(t))

x(t) € X provides the rate (or velocity) (we can see)



Duality in gradient flow dynamics: nonlinear ODE

x(t) = —VI£(x(t))

x(t) € X provides the rate (or velocity) (we can see)

—VFf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)



Duality in gradient flow dynamics: nonlinear ODE

x(t) = =VF(x(1))
x(t) € X provides the rate (or velocity) (we can see)
—VFf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)
The equation should be written in the force-balance form
Irx(t) = —VIf(x(t)) € X*, Ir:X — X" is the Riesz isomorphism.
It X 2 X*: i€ OR*(u,—DF) C T,M (rate) vs 0 € DF + OR(u, 1) C T7 M (force)



Duality in gradient flow dynamics: nonlinear ODE

x(t) = =VF(x(t))

x(t) € X provides the rate (or velocity) (we can see)
—VFf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)

The equation should be written in the force-balance form
Irx(t) = —VF(x(t)) € X*, Ir: X — X" is the Riesz isomorphism.
It X 2 X*: i€ OR*(u,—DF) C T,M (rate) vs 0 € DF + OR(u, 1) C T7 M (force)

Energy dissipation balance (equality) via Fenchel(-Young) duality and optimality

d

Ef(x(t)) =x+ (VF(x(t)), x)x



Duality in gradient flow dynamics: nonlinear ODE

x(t) = =VF(x(t))

x(t) € X provides the rate (or velocity) (we can see)
—VFf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)

The equation should be written in the force-balance form
Irx(t) = —VF(x(t)) € X*, Ir: X — X" is the Riesz isomorphism.
It X 2 X*: i€ OR*(u,—DF) C T,M (rate) vs 0 € DF + OR(u, 1) C T7 M (force)

Energy dissipation balance (equality) via Fenchel(-Young) duality and optimality

d

——F(x(1)) =x+ (VF(x(1)), %)x = —[| VF(x(1))]?



Duality in gradient flow dynamics: nonlinear ODE

x(t) = =VF(x(t))

x(t) € X provides the rate (or velocity) (we can see)
—VFf(x(t)) € X* provides the (thermodynamic) force (can't see; shadow price)

The equation should be written in the force-balance form
Irx(t) = —VF(x(t)) € X*, Ir: X — X" is the Riesz isomorphism.
It X 2 X*: i€ OR*(u,—DF) C T,M (rate) vs 0 € DF + OR(u, 1) C T7 M (force)

Energy dissipation balance (equality) via Fenchel(-Young) duality and optimality

d 1

() =xe (VA(x()), 50x = = [ VFx()I? = =5

_ 1
%2 + SV ()



Duality in gradient flow dynamics: nonlinear ODE
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Energy does not necessarily decrease along non-solutions, i.e., only inequality
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Wasserstein gradient flow in the rate form (primal; vs. force-balance)

Oept = —Kowo(1t) DF = V - (uVDF).

In (Prob(X), F, W5), Fenchel(-Young) duality yields the Energy dissipation balance
(equality) [Ambrosio et al. 2007]

d 1

F ) = 5w (1 — 19 Flws (1))

For (Boltzmann) entropy F(u) = plog p, the metric slope is

V7 Flws(u(t)* = [ |V log pl?p dx

However, for some nonlinear (in measure) energy (e.g., in variational inference)

SF
F(u) = Dk (), i (1] = log p — log T,

density p 1= g—g and force field g—z |11] are not accessible if 11 is atomic.
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Kernel gradient flow as dual space force-balance

Motivated by the “Kernel DRO-type" derivation in [Zhu et al.'21, Kremer et al.'23],

Proposition(informal). The gradient flow equation for (P(X), F, MMD) is given by the
dual space (force-balance) kernel gradient flow

OF
kxp=—g¢&H, where Vg = V@ (] p-ae.

where convolution k x ;= [ k(x,-)u( dx). If F is entropy, Vg “matches the score” .

Compared with the Wasserstein GF of entropy, our kernel geometry approximates the
(unavailable) “score function” Vg = Vlog p in a principled geometry.
This gives the interpretation of the dual kernel function in dynamics

g is the approximate (thermodynamic) force field.
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Back to (kernel) robust learning

Motivated by our insight so far, we have a “dynamic formulation” of the dual DRO
problem [Zhu et al. 2021}

min sup Ep 1(6, &),
" MMD(P,P)<e

the distribution shift (a.k.a. adversarial attack) is modeled by the dynamical system of
the dual force-balance kernel gradient flow

N\

kxp=—g, wuw0)=P,ulT)=P.

where Vg(x) approximates the gradient V/(6,&). (see also an alternative using kernel
mirror prox. [Dvurechensky & Zhul)
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Summary

* Two types of duality: static (DRO) to dynamic (GF):
e duality in dynamics: force vs. rate

* Role of the dual kernel function in this talk
* robust surrogate loss (flatten the curve)
 optimal test fcn. for two-sample test
 approximate force field

* Our dual kernel scheme (DRO, GF) is designed to treat

* Energy that’s the integral of nonlinear functions or
nonlinear in measures

F(p) = JV du,  F(u) = Jcb(p) (mw=p-Z)

which are challenging for computation using the WGF
(complication due to W-geodesics).

 Other important uses of the dual kernel function: Causal
inference, conditional moments, (robust) control and RL
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