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➢ Blocks of missing values after merging different datasets

➢ Related studies from different labs
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➢ Imputation and then prediction

➢ Mean/Median imputation 

➢ Expectation Maximization [Little and Rubin, 1977]

➢ KNN Imputer [Troyanskaya et al., 2001]

➢ MissForest [Stekhoven et al., 2012]

➢ Generative Adversarial Imputation Nets (GAIN) [Yoon et al., 2018]
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Existing Approaches for Supervised Learning in the Presence of Missing Data

➢ Prediction without imputation 

➢ Robust Optimization over uncertainty sets

➢ Removing the rows containing missing entries

➢ Losing information 
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➢ Estimating confidence intervals for first and second order moments using bootstrap

➢ Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a 
large proportion of missing values
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➢ Solving a distributionally robust optimization over estimated confidence intervals

➢ The proposed min-max problem is intractable in general.
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Distributionally Robust Ridge Regression 

➢ Expanding the objective function leads to:

➢ How can we solve this problem efficiently?
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First Idea for Solving the Robust Ridge Regression

➢ Observation: the problem is convex-concave with convex constraints
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➢ Using Danskin’s theorem, applying gradient descent to 

➢ No closed-form for 
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➢ Applying projected gradient ascent on                leads to: 
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➢ The minimization problem has a closed-form solution

How to perform both projections?
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➢ Jointly normal dataset with linear relation between the predictors and the target

RIFLE Consistency
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➢ 40% missing values and 100 features 

➢ Changing the number of samples from 100 to 5 Million
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MICE: Royston, Patrick, and Ian R. White. "Multiple imputation by chained equations (MICE): implementation in Stata." Journal of statistical software 45 (2011).

Amelia: Honaker, James, Gary King, and Matthew Blackwell. "Amelia II: A program for missing data." Journal of statistical software 45 (2011).

MissForest: Stekhoven, Daniel J., and Peter Bühlmann. "MissForest: non-parametric missing value imputation for mixed-type data." Bioinformatics 28, (2012).

KNN Imputer: Troyanskaya, Olga et al., "Missing value estimation methods for DNA microarrays." Bioinformatics 17 (2001).

MIDA: Gondara, Lovedeep, and Ke Wang. "Mida: Multiple imputation using denoising autoencoders." In PKDD (2018).

Mean Imputer: Little, Roderick JA, and Donald B. Rubin. Statistical analysis with missing data. Vol. 793. John Wiley & Sons, (2019).

➢ Evaluation on Drive dataset (40% missing values completely at random)

RIFLE Outperforms Other Algorithms for Lower Samples
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