RIFLE: Robust Inference and Imputation From Low Order Marginals

Sina Baharlouei

Daniel J. Epstein Department of Industrial and Systems Engineering

Kelechi Ogudu

Peng Dai

Sze-chuan Suen

Meisam Razaviyayn

University of Southern California

- Blank answers in questionnaires
- Limitations of data gathering

- Blank answers in questionnaires
- Limitations of data gathering

- Blank answers in questionnaires
- Limitations of data gathering

- Blank answers in questionnaires
- Limitations of data gathering

- Blocks of missing values after merging different datasets
 - Related studies from different labs

Existing Approaches for Supervised Learning in the Presence of Missing Data

- Removing the rows containing missing entries
 - Losing information

Existing Approaches for Supervised Learning in the Presence of Missing Data

- Removing the rows containing missing entries
 Losing information
- Imputation and then prediction
 - Mean/Median imputation
 - Expectation Maximization [Little and Rubin, 1977]
 - KNN Imputer [Troyanskaya et al., 2001]
 - MissForest [Stekhoven et al., 2012]
 - Generative Adversarial Imputation Nets (GAIN) [Yoon et al., 2018]
 - The imputation error propagates to the prediction phase

Existing Approaches for Supervised Learning in the Presence of Missing Data

- Removing the rows containing missing entries
 - Losing information
- Imputation and then prediction
 - Mean/Median imputation
 - Expectation Maximization [Little and Rubin, 1977]
 - KNN Imputer [Troyanskaya et al., 2001]
 - MissForest [Stekhoven et al., 2012]
 - Generative Adversarial Imputation Nets (GAIN) [Yoon et al., 2018]
 - The imputation error propagates to the prediction phase
 - Prediction without imputation
 - Robust Optimization over uncertainty sets

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

Prior Work: robustness over uncertainty sets around data points [Xu et al., 2009]

$$\min_{\boldsymbol{\theta}} \max_{\{\boldsymbol{\delta}_i \in \mathcal{N}_i\}_{i=1}^n} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i - \boldsymbol{\delta}_i, y_i; \boldsymbol{\theta})$$

Too many hyper-parameters (one per data point!)

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t. $\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$
 $\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t.
$$\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$$

$$\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$$

Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a large proportion of missing values

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t. $\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$
 $\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$

- Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a large proportion of missing values
- Estimating confidence intervals for first and second order moments using **bootstrap**

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t. $\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$
 $\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$

- Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a large proportion of missing values
- Estimating confidence intervals for first and second order moments using **bootstrap**
- Solving a distributionally robust optimization over estimated confidence intervals

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t.
$$\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$$

$$\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$$

- Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a large proportion of missing values
- Estimating confidence intervals for first and second order moments using **bootstrap**

Solving a distributionally robust optimization over estimated confidence intervals

$$\begin{split} \min_{\boldsymbol{\theta}} & \max_{P} & \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})] \\ & \text{s.t.} & \boldsymbol{\mu}_{\min} \leq \mathbb{E}_{P}[\mathbf{z}] \leq \boldsymbol{\mu}_{\max}, \\ & \mathbf{C}_{\min} \leq \mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] \leq \mathbf{C}_{\max}, \end{split}$$

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})]$$
s.t. $\mathbb{E}_{P}[\mathbf{z}] = \hat{\boldsymbol{\mu}},$
 $\mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] = \hat{C}.$

- Estimations can be inaccurate for low-sample, high-dimensional, and/or datasets with a large proportion of missing values
- Estimating confidence intervals for first and second order moments using **bootstrap**
- Solving a distributionally robust optimization over estimated confidence intervals

$$\begin{array}{ll} \min_{\boldsymbol{\theta}} & \max_{P} & \mathbb{E}_{P}[\ell(\mathbf{z};\boldsymbol{\theta})] \\ & \text{s.t.} & \boldsymbol{\mu}_{\min} \leq \mathbb{E}_{P}[\mathbf{z}] \leq \boldsymbol{\mu}_{\max}, \\ & & \mathbf{C}_{\min} \leq \mathbb{E}_{P}[\mathbf{z}\mathbf{z}^{T}] \leq \mathbf{C}_{\max}. \end{array}$$

The proposed min-max problem is intractable in general.

Distributionally Robust Ridge Regression

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[(\boldsymbol{\theta}^{T}\mathbf{x} - y)^{2}] + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$
s.t.
$$\boldsymbol{\mu}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)] \leq \boldsymbol{\mu}_{\max}$$

$$\mathbf{C}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)(\mathbf{x}, y)^{T}] \leq \mathbf{C}_{\max}$$

Distributionally Robust Ridge Regression

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[(\boldsymbol{\theta}^{T}\mathbf{x} - y)^{2}] + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$
s.t.
$$\boldsymbol{\mu}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)] \leq \boldsymbol{\mu}_{\max}$$

$$\mathbf{C}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)(\mathbf{x}, y)^{T}] \leq \mathbf{C}_{\max}$$

Expanding the objective function leads to:

$$\begin{split} \min_{\boldsymbol{\theta}} & \max_{\mathbf{C}, \mathbf{b}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succ \mathbf{0} \end{split}$$

Distributionally Robust Ridge Regression

$$\min_{\boldsymbol{\theta}} \max_{P} \mathbb{E}_{P}[(\boldsymbol{\theta}^{T}\mathbf{x} - y)^{2}] + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$
s.t.
$$\boldsymbol{\mu}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)] \leq \boldsymbol{\mu}_{\max}$$

$$\mathbf{C}_{\min} \leq \mathbb{E}_{P}[(\mathbf{x}, y)(\mathbf{x}, y)^{T}] \leq \mathbf{C}_{\max}$$

Expanding the objective function leads to:

$$\begin{split} \min_{\boldsymbol{\theta}} & \max_{\mathbf{C}, \mathbf{b}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succ \mathbf{0} \end{split}$$

How can we solve this problem efficiently?

 \blacktriangleright Using Danskin's theorem, applying gradient descent to $g(\theta)$

 \blacktriangleright Using Danskin's theorem, applying gradient descent to $g(\theta)$

> No closed-form for
$$g(\theta)$$

 \blacktriangleright Using Danskin's theorem, applying gradient descent to $g(\theta)$

> No closed-form for $g(\theta)$

 \blacktriangleright Using Danskin's theorem, applying gradient descent to $g(\theta)$

> No closed-form for $g(\theta)$

Observation: the problem is convex-concave with convex constraints

$$\begin{split} \min_{\boldsymbol{\theta}} & \max_{\mathbf{C}, \mathbf{b}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ & \text{s.t.} \quad \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succeq \mathbf{0} \end{split}$$

University of Southern California

$$\begin{aligned} \max_{\mathbf{C}, \mathbf{b}} & \min_{\boldsymbol{\theta}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succeq \mathbf{0} \end{aligned}$$

University of Southern California

$$g(\mathbf{C}, \mathbf{b})$$

$$\max_{\mathbf{C}, \mathbf{b}} \quad \min_{\boldsymbol{\theta}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2\mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2$$
s.t. $\hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta},$
 $\hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta},$
 $\mathbf{C} \succeq 0$

University of Southern California

$$g(\mathbf{C}, \mathbf{b})$$
max
$$\min_{\mathbf{C}, \mathbf{b}} \quad \min_{\boldsymbol{\theta}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2\mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2$$
s.t.
$$\hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta},$$

$$\hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta},$$

$$\mathbf{C} \succeq 0$$

The minimization problem has a closed-form solution

$$g(\mathbf{C}, \mathbf{b})$$
max
$$\min_{\boldsymbol{\theta}} \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2\mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2$$
s.t.
$$\hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta},$$

$$\hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta},$$

$$\mathbf{C} \succeq 0$$

- The minimization problem has a closed-form solution
- Applying projected gradient ascent on $g(\mathbf{C}, \mathbf{b})$ leads to:

$$g(\mathbf{C}, \mathbf{b})$$
max
$$\min_{\boldsymbol{\theta}} \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2\mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2$$
s.t.
$$\hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta},$$

$$\hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta},$$

$$\mathbf{C} \succeq 0$$

 \blacktriangleright Applying projected gradient ascent on $g(\mathbf{C}, \mathbf{b})$ leads to:

Algorithm Projected Gradient Ascent on Robust Ridge Regression

1: for i = 1, ..., T do

2: Update
$$\mathbf{C} = [\Pi_{\boldsymbol{\Delta}} (\mathbf{C} + \alpha \boldsymbol{\theta} \boldsymbol{\theta}^T)]_+$$

3: Update $\mathbf{b} = \Pi_{\delta}(\mathbf{b} - 2\alpha \boldsymbol{\theta})$

4: Set
$$\boldsymbol{\theta} = (\mathbf{C} + \lambda \mathbf{I})^{-1} \mathbf{b}$$

5: end for

$$g(\mathbf{C}, \mathbf{b})$$
max
$$\min_{\boldsymbol{\theta}} \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2\mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2$$
s.t.
$$\hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta},$$

$$\hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta},$$

$$\mathbf{C} \succeq 0$$

 \blacktriangleright Applying projected gradient ascent on $g(\mathbf{C}, \mathbf{b})$ leads to:

How to handle the joint projection to the set of **box constraints** and the **PSD cone**?

How to handle the joint projection to the set of **box constraints** and the **PSD cone**?

Removing the PSD constraint in the implementation (relaxation)

How to handle the joint projection to the set of **box constraints** and the **PSD cone**?

Removing the PSD constraint in the implementation (relaxation)

Idea: Using the dual formulation on the inner maximization problem

$$\begin{split} \min_{\boldsymbol{\theta}} & \max_{\mathbf{C}, \mathbf{b}} \quad \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succeq \mathbf{0} \end{split}$$

How to handle the joint projection to the set of **box constraints** and the **PSD cone**?

Removing the PSD constraint in the implementation (relaxation)

Idea: Using the dual formulation on the inner maximization problem

$$\begin{array}{ccc} \min & \max & \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succeq 0 \\ \end{array}$$
Writing the dual of inner maximization problem

How to handle the joint projection to the set of **box constraints** and the **PSD cone**?

Removing the PSD constraint in the implementation (relaxation)

Idea: Using the dual formulation on the inner maximization problem

$$\begin{array}{ccc} \min_{\boldsymbol{\theta}} & \max_{\mathbf{C}, \mathbf{b}} & \boldsymbol{\theta}^T \mathbf{C} \boldsymbol{\theta} - 2 \mathbf{b}^T \boldsymbol{\theta} + \lambda \|\boldsymbol{\theta}\|_2^2 \\ & \text{s.t.} & \hat{\mathbf{C}} - \boldsymbol{\Delta} \leq \mathbf{C} \leq \hat{\mathbf{C}} + \boldsymbol{\Delta}, \\ & \hat{\mathbf{b}} - \boldsymbol{\delta} \leq \mathbf{b} \leq \hat{\mathbf{b}} + \boldsymbol{\delta}, \\ & \mathbf{C} \succeq 0 \\ & & \mathbf{V} \text{riting the dual of inner maximization problem} \\ & - \langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \\ & T \end{array}$$

s.t.

$$\begin{array}{ll} \min_{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \| \mathbf{e} \\ \text{s.t.} & -\boldsymbol{\theta} \boldsymbol{\theta}^T - \mathbf{A} + \mathbf{B} - \mathbf{H} = 0, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e} \ge 0, \\ & \mathbf{H} \succeq 0 \end{array}$$

 $\lambda \| \boldsymbol{\theta} \|^2$

Change of Variables

$$\begin{array}{l} \min_{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}} \\ \text{s.t.} \end{array} & \begin{array}{l} -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \hline -\boldsymbol{\theta}\boldsymbol{\theta}^T - \mathbf{A} + \mathbf{B} - \mathbf{H} = 0, \\ 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e} \ge 0, \\ \mathbf{H} \succeq 0 \end{array}$$

Change of Variables

$$\begin{array}{ll} \underset{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}}{\min} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ & \\ \mathbf{f}_{\mathbf{\theta}} - \boldsymbol{\theta} \boldsymbol{\theta}^T - \mathbf{A} + \mathbf{B} - \mathbf{H} = 0, \\ & \\ 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \\ \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e} \ge 0, \\ & \\ \mathbf{H} \succeq 0 \end{array}$$

$$\mathbf{G} = \mathbf{H} + \boldsymbol{\theta} \boldsymbol{\theta}^T$$

Change of Variables

$$\begin{array}{l} \underset{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}}{\min} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \\ \text{s.t.} & -\boldsymbol{\theta}\boldsymbol{\theta}^T - \mathbf{A} + \mathbf{B} - \mathbf{H} = 0, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e} \ge 0, \\ & \mathbf{H} \succeq 0 \end{array}$$

$$\begin{split} \min_{\substack{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H} \\ \text{s.t.}}} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e} \geq 0, \\ & \mathbf{G} \succeq \boldsymbol{\theta} \boldsymbol{\theta}^T \end{split}$$

$$\begin{array}{ll} \min_{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A} = \mathbf{A}', \mathbf{B} = \mathbf{B}', \\ & \mathbf{d} = \mathbf{d}', \mathbf{e} = \mathbf{e}', \boldsymbol{\theta} = \boldsymbol{\theta}', \\ & \mathbf{A}', \mathbf{B}', \mathbf{d}', \mathbf{e}' \ge 0, \\ & \mathbf{G} \succeq \boldsymbol{\theta}' \boldsymbol{\theta}'^T \end{array}$$

$$\begin{array}{ll} \min_{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A} = \mathbf{A}', \mathbf{B} = \mathbf{B}', \\ & \mathbf{d} = \mathbf{d}', \mathbf{e} = \mathbf{e}', \boldsymbol{\theta} = \boldsymbol{\theta}', \\ & \mathbf{A}', \mathbf{B}', \mathbf{d}', \mathbf{e}' \ge 0, \\ & \mathbf{G} \succeq \boldsymbol{\theta}' \boldsymbol{\theta}'^T \end{array}$$

Defining two blocks of variables

$$\begin{array}{ll} \min_{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H}} & -\langle \mathbf{b}_{\min}, \mathbf{d} \rangle + \langle \mathbf{b}_{\max}, \mathbf{e} \rangle - \langle \mathbf{C}_{\min}, \mathbf{A} \rangle + \langle \mathbf{C}_{\max}, \mathbf{B} \rangle + \lambda \|\boldsymbol{\theta}\|^2 \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A} = \mathbf{A}', \mathbf{B} = \mathbf{B}', \\ & \mathbf{d} = \mathbf{d}', \mathbf{e} = \mathbf{e}', \boldsymbol{\theta} = \boldsymbol{\theta}', \\ & \mathbf{A}', \mathbf{B}', \mathbf{d}', \mathbf{e}' \ge 0, \\ & \mathbf{G} \succeq \boldsymbol{\theta}' \boldsymbol{\theta}'^T \qquad \mathbf{w} = (\boldsymbol{\theta}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{G}, \boldsymbol{B}', \boldsymbol{A}') \\ \end{array}$$

$$\geq \text{ Defining two blocks of variables} \qquad \mathbf{z} = (\boldsymbol{\theta}', \boldsymbol{d}', \boldsymbol{e}', \boldsymbol{B}, \boldsymbol{A})$$

$$\begin{array}{l} \min_{\substack{\theta, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H} \\ \theta, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H} \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\theta - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A} = \mathbf{A}', \mathbf{B} = \mathbf{B}', \\ & \mathbf{d} = \mathbf{d}', \mathbf{e} = \mathbf{e}', \theta = \theta', \\ & \mathbf{A}', \mathbf{B}', \mathbf{d}', \mathbf{e}' \ge 0, \\ & \mathbf{G} \succeq \theta' \theta'^T \\ \end{array}$$

$$\begin{array}{l} \mathbf{w} = (\theta, d, e, G, B', \mathbf{A}') \\ \end{array}$$

$$\begin{array}{l} \textbf{Defining two blocks of variables} \\ \hline \mathbf{I}: \ \mathbf{for} \ t = 1, \dots, T \ \mathbf{do} \\ 2: \quad \mathbf{w}^{t+1} = \arg\min_{\mathbf{w}} f(\mathbf{w}) + \langle \mathbf{Aw} + \mathbf{Bz}^t - \mathbf{c}, \lambda \rangle + \frac{\rho}{2} \|\mathbf{Aw} + \mathbf{Bz}^t - \mathbf{c}\|^2 \\ 3: \quad \mathbf{z}^{t+1} = \arg\min_{\mathbf{z}} f(\mathbf{w}^{t+1}) + \langle \mathbf{Aw}^{t+1} + \mathbf{Bz} - \mathbf{c}, \lambda \rangle + \frac{\rho}{2} \|\mathbf{Aw}^{t+1} + \mathbf{Bz} - \mathbf{c}\|^2$$

4:
$$\boldsymbol{\lambda}^{t+1} = \boldsymbol{\lambda}^t + \rho(\mathbf{A}\mathbf{w}^{t+1} + \mathbf{B}\mathbf{z}^{t+1} - \mathbf{c})$$

$$5:$$
 end for

$$\begin{split} \min_{\substack{\boldsymbol{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H} \\ \mathbf{\theta}, \mathbf{A}, \mathbf{B}, \mathbf{d}, \mathbf{e}, \mathbf{H} \\ \text{s.t.} & \mathbf{B} - \mathbf{A} = \mathbf{G}, \\ & 2\boldsymbol{\theta} - \mathbf{d} + \mathbf{e} = 0, \\ & \mathbf{A} = \mathbf{A}', \mathbf{B} = \mathbf{B}', \\ & \mathbf{d} = \mathbf{d}', \mathbf{e} = \mathbf{e}', \boldsymbol{\theta} = \boldsymbol{\theta}', \\ & \mathbf{A}', \mathbf{B}', \mathbf{d}', \mathbf{e}' \geq 0, \\ & \mathbf{G} \succeq \boldsymbol{\theta}' \boldsymbol{\theta}'^T \\ \end{split} \\ \textbf{W} = (\boldsymbol{\theta}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{G}, \boldsymbol{B}', \mathbf{A}') \end{split}$$

$$\begin{split} \textbf{Defining two blocks of variables} & \mathbf{z} = (\boldsymbol{\theta}', \boldsymbol{d}', \mathbf{e}', \boldsymbol{B}, \boldsymbol{A}) \\ \hline \begin{array}{l} \textbf{Algorithm ADMM for Two Blocks} \\ \hline 1: \ \textbf{for } t = 1, \dots, T \ \textbf{do} \\ 2: \ \mathbf{w}^{t+1} = \arg\min_{\mathbf{w}} f(\mathbf{w}) + \langle \mathbf{A}\mathbf{w} + \mathbf{B}\mathbf{z}^t - \mathbf{c}, \boldsymbol{\lambda} \rangle + \frac{\rho}{2} \|\mathbf{A}\mathbf{w} + \mathbf{B}\mathbf{z}^t - \mathbf{c}\|^2 \\ 3: \ \mathbf{z}^{t+1} = \operatorname{arg min}_{\mathbf{z}} f(\mathbf{w}^{t+1}) + \langle \mathbf{A}\mathbf{w}^{t+1} + \mathbf{B}\mathbf{z} - \mathbf{c}, \boldsymbol{\lambda} \rangle + \frac{\rho}{2} \|\mathbf{A}\mathbf{w}^{t+1} + \mathbf{B}\mathbf{z} - \mathbf{c}\|^2 \\ 4: \ \boldsymbol{\lambda}^{t+1} = \boldsymbol{\lambda}^t + \rho(\mathbf{A}\mathbf{w}^{t+1} + \mathbf{B}\mathbf{z}^{t+1} - \mathbf{c}) \\ 5: \ \textbf{end for} \end{split}$$

Proposition. If the feasible set has non-empty interior, then RIFLE converges to an ϵ -optimal solution of the problem in $\mathcal{O}(\frac{1}{\epsilon})$ iterations.

RIFLE Consistency

> Jointly normal dataset with linear relation between the predictors and the target

- 40% missing values and 100 features
- Changing the number of samples from 100 to 5 Million

How Many Times RIFLE Outperforms All Existing Packages?

How Many Times RIFLE Outperforms All Existing Packages?

RIFLE wins more than the best imputer packages

USC Viterbi School of Engineering

University of Southern California

How Many Times RIFLE Outperforms All Existing Packages?

RIFLE wins more than the best imputer packages

USC Viterbi School of Engineering

RIFLE Outperforms Other Algorithms for Lower Samples

Evaluation on Drive dataset (40% missing values completely at random)

MissForest: Stekhoven, Daniel J., and Peter Bühlmann. "MissForest: non-parametric missing value imputation for mixed-type data." *Bioinformatics* 28, (2012).
MICE: Royston, Patrick, and Ian R. White. "Multiple imputation by chained equations (MICE): implementation in Stata." *Journal of statistical software* 45 (2011).
Mean Imputer: Little, Roderick JA, and Donald B. Rubin. *Statistical analysis with missing data*. Vol. 793. John Wiley & Sons, (2019).
KNN Imputer: Troyanskaya, Olga et al., "Missing value estimation methods for DNA microarrays." *Bioinformatics* 17 (2001).
MIDA: Gondara, Lovedeep, and Ke Wang. "Mida: Multiple imputation using denoising autoencoders." In *PKDD (*2018).
Amelia: Honaker, James, Gary King, and Matthew Blackwell. "Amelia II: A program for missing data." *Journal of statistical software* 45 (2011).

Reference

Sina Baharlouei, Kelechi Ogudu, Peng Dai, Sze-chuan Suen and Meisam Razaviyayn. "RIFLE: Imputation and Robust Inference from Low Order Marginals" In ICML Workshop on Duality Principles for Modern Machine Learning, 2023.

RIFLE Package: https://github.com/optimization-for-data-driven-science/RIFLE.

