Convergence of mean field Langevin dynamics: Duality viewpoint and neural network optimization

Taiji Suzuki

The University of Tokyo / AIP-RIKEN

(Deep learning theory team)

THE UNIVERSITY OF TOKYO

29th/July/2023

Duality Principles for Modern Machine Learning ICML2023 workshop@Hawaii

Atsushi Nitanda (Kyusyu Institute of Technology/ RIKEN-AIP) Denny Wu (University of Toronto/ Vector Institute)

Noisy gradient descent

Optimization of neural network is basically non-convex.
 ➢ Noisy gradient descent (e.g, SGD) is effective for non-convex optimization.

Noisy perturbation is helpful to escape a local minimum. ➤ Likely converges to a flat global minimum.

Gradient Langevin Dynamics (GLD)⁴

$$\begin{split} \min_{x \in \mathbb{R}^d} L(x) &= \min_{x \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell_i(x) \quad \text{(Non-convex)} \\ \\ \hline \mathcal{B}: \text{inverse temperature} \\ \mathrm{d}X_t &= -\nabla L(X_t) \mathrm{d}t + \sqrt{2\beta^{-1}} \mathrm{d}B_t \quad (\text{Gradient Langevin dynamics}) \\ \hline \mathbf{D} \text{iscretization} \qquad \begin{bmatrix} \text{Gelfand and Mitter (1991); Borkar and Mitter} \\ (1999); Welling and Teh (2011) \end{bmatrix} \\ \\ \hline \text{(Euler-Maruyama scheme)} \\ \\ X_{t+1} &= X_t - \eta \nabla L(X_t) + \sqrt{2\eta\beta^{-1}}\xi_t \qquad \xi_t \sim \mathrm{N}(0, I) \end{split}$$

Stationary distribution : $\mu^* \propto \exp(-\beta L(X))$

Can stay around the global minimum of L(x).

GLD as a Wasserstein gradient flow⁵

$$\mathrm{d}X_t = -\nabla L(X_t)\mathrm{d}t + \sqrt{2\beta^{-1}}\mathrm{d}B_t$$

 μ_t : Distribution of X_t (we can assume it has a density)

PDE that describes μ_t 's dynamics [Fokker-Planck equation]:

$$\partial_t \mu_t = \nabla \cdot \left[\mu_t \nabla L \right] + \frac{1}{\beta} \Delta_x \mu_t$$
$$= \nabla \cdot \left[\mu_t \left(\nabla L + \frac{1}{\beta} \nabla \log(\mu_t) \right) \right]$$

This is the Wasserstein gradient flow to minimize the following objective:

$$\mu^* = \underset{\mu \in \mathcal{P}}{\operatorname{arg\,min}} \int L(x) d\mu(x) + \frac{1}{\beta} \operatorname{Ent}(\mu) =: \mathcal{L}(\mu)$$
[linear w.r.t. μ] (Ent(μ) = $\int \log(\mu) d\mu$)
$$\downarrow \mu_t \rightsquigarrow \mu^*(x) \propto \exp(-\beta L(x)) =$$
Stationary distribution
c.f., Donsker-Varadan duality formula

Objective of mean field NN

 $(\text{Ent}(\mu) = \int \log(\mu) d\mu)$

Application:

Optimization of 2-layer neural network in mean field regime

Variational inference

Example of loss function

$$f(z) = \frac{1}{M} \sum_{j=1}^{M} r_j \sigma(w_j^{\top} z)$$

★ Mean field limit:

$$f(z) = \frac{1}{M} \sum_{j=1}^{M} r_j \sigma(w_j^{\top} z) \xrightarrow{M \to \infty} f_{\mu}(z) = \int r \sigma(w^{\top} z) d\mu(r, w)$$

Linear with respect to μ .

[Nitanda&Suzuki, 2017][Chizat&Bach, 2018][Mei, Montanari&Nguyen, 2018][Rotskoff&Vanden-Eijnden, 2018]

Loss function (empirical risk + regularization):

$$F(\mu) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(f_\mu(z_i)) + \lambda_1 \mathbb{E}_\mu[||x||^2]$$

Convex w.r.t. μ if the loss ℓ_i is convex (e.g., squared / logistic loss).

$$F(\mu) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(f_\mu(z_i)) + \lambda_1 \mathbb{E}_\mu[||x||^2]$$
$$f_\mu(z) = \int r\sigma(w^\top z) d\mu(r, w)$$

General form of mean field LD

Mean field Langevin dynamics:

$$\mathcal{L}(\mu) = F(\mu) + \lambda_2 \text{Ent}(\mu)$$
convex
(Ent(\mu) = \int \log(\mu) \dd \mu)

SDE the Fokker-Planck equation of which corresponds to the Wasserstein GF:

$$dX_t = -\nabla \frac{\delta F(\mu_t)}{\delta \mu} (X_t) dt + \sqrt{2\lambda_2} dB_t$$

$$\mu_t = Law(X_t)$$

Distribution dependent SDE

GLD:
$$dX_t = -\nabla L(X_t)dt + \sqrt{2\beta^{-1}}dB_t$$
, $\frac{\delta F(\mu)}{\delta \mu}(\cdot) = L(\cdot)$
 $F(\mu) = \int L(x)d\mu$

Definition (first variation)

The first variation $\frac{\delta F}{\delta u}: \mathcal{P} \times \mathbb{R}^d \to \mathbb{R}$ is defined as a continuous functional such as

$$\lim_{\epsilon \to 0} \frac{F(\epsilon \nu + (1 - \epsilon)\mu) - F(\mu)}{\epsilon} = \int \frac{\delta F(\mu)}{\delta \mu} (x) d(\nu - \mu)(x)$$

Proximal Gibbs measure

$$\mathcal{L}(\mu) = \underline{F(\mu)} + \lambda_2 \operatorname{Ent}(\mu)$$
(Ent(\mu) = \int \log(\mu) d\mu)

$$\bar{\mathcal{L}}_{\mu}(\nu) = \int \frac{\delta F(\mu)}{\delta \mu}(x) d\nu(x) + \lambda_2 \operatorname{Ent}(\nu)$$

$$\overset{F}{\longrightarrow}$$

$$p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2} \frac{\delta F(\mu)}{\delta \mu}(x)\right)$$

$$F(\mu) = \int L(x) d\mu$$

$$\Rightarrow p_{\mu} \propto \exp(-\lambda_2^{-1} L(x))$$

The proximal Gibbs measure is a kind of "tentative" target.
 It plays important role in the convergence analysis.

Dual objective (informal)

[Nitanda, Oko, Wu, Suzuki (ICML2023); Nitanda, Wu, Suzuki (AISTATS2022); Oko, Suzuki, Nitanda, Wu (ICLR2022)] $(\operatorname{Ent}(\mu) = \int \log(\mu) d\mu)$ $\min \mathcal{L}(\mu) = F(\mu)$ $\lambda_2 \text{Ent}(\mu)$ Primal $\mu \in \mathcal{P}$ $\min_{x \in \mathcal{X}} f(Ax) + g(x) = -\min_{g \in \mathcal{Y}^*} f^*(g) + g^*(-A^*g) \quad \text{(Fenchel's duality theorem)}$ П $\rightarrow \mathcal{V}$ (bounded linear) $\max_{g:\mathbb{R}^d\to\mathbb{R}}\mathcal{D}(g) = -F^*(g) - \lambda_2 \log\left(\int \exp\left(-\frac{g(x)}{\lambda_2}\right)\right)$ $\mathrm{d}x$ Dual $q:\mathbb{R}^d \to \mathbb{R}$ $F^*(g) := \sup_{\mu \in \mathcal{P}} \{ \int g(x) d\mu(x) - F(\mu) \}$ **Primal-Dual variable correspondence:** $\mu \xrightarrow{(\mathsf{D})} g_{\mu}(x) := \frac{\delta F(\mu)}{\delta \mu}(x) \xrightarrow{(\mathsf{P})} p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2} \frac{\delta F(\mu)}{\delta \mu}(x)\right)$ (P) **Duality gap and divergence:** $\mu^* = \arg \min_{\mu \in \mathcal{P}} \mathcal{L}(\mu)$ • $\mathcal{L}(\mu) - \mathcal{D}(g_{\mu}) = \lambda_2 \mathrm{KL}(\mu || p_{\mu}) \ge 0$ • $\mathcal{L}(\mu^*) = \mathcal{D}(g_{\mu^*}) \Rightarrow \mu^* = p_{\mu^*}$ Gradient (optimality condition)

11

Entropy sandwich

Proximal Gibbs measure:

 $\mu^* = \arg\min \mathcal{L}(\mu)$

$$p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2} \frac{\delta F(\mu)}{\delta \mu}(x)\right) \qquad p_{\mu} = \underset{\nu \in \mathcal{P}}{\arg\min(\nu - \mu)} \frac{\delta F(\mu)}{\delta \mu} + \lambda_2 \operatorname{Ent}(\nu)$$

Theorem (Entropy sandwich) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

12

$$\lambda_{2} \mathrm{KL}(\mu || \mu^{*}) = \mathcal{L}(\mu) - \frac{\mathcal{L}(\mu^{*})}{\mathcal{D}(g_{\mu^{*}})} \leq \mathcal{L}(\mu) - \mathcal{D}(g_{\mu}) = \lambda_{2} \mathrm{KL}(\mu || p_{\mu})$$

Convergence rate

Proximal Gibbs measure:

$$p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2}\frac{\delta F(\mu)}{\delta \mu}(x)\right) \qquad p_{\mu} = \operatorname*{arg\,min}_{\nu \in \mathcal{P}}(\nu - \mu)\frac{\delta F(\mu)}{\delta \mu} + \lambda_2 \operatorname{Ent}(\nu)$$

Assumption (Log-Sobolev inequality)

c.f., Polyak-Lojasiewicz condition

There exists $\alpha > 0$ such that for any probability measure ν (abs. cont. w.r.t. p_{μ}), $KL(\nu||p_{\mu}) \leq \frac{1}{2\alpha} I(\nu||p_{\mu})$ Fisher-div $KL(\nu||\mu) = \int \log\left(\frac{d\nu}{d\mu}\right) d\nu$ $I(\nu||\mu) = \int \left\|\nabla \log \frac{d\nu}{d\mu}\right\|^2 d\nu$

Theorem (Linear convergence) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

If p_{μ_t} satisfies the LSI condition for any $t \ge 0$, then

$$\mathcal{L}(\mu_t) - \mathcal{L}(\mu^*) \le \exp(-2\alpha\lambda_2 t)(\mathcal{L}(\mu_0) - \mathcal{L}(\mu^*))$$

This is a non-linear extension of well known GLD convergence analysis.

Example

L2-regularized loss function for mean field 2-layer NN: $f_{\mu}(z) = \int h_x(z) d\mu(x)$ where $h_x(z) = r\sigma(w^{\top}z)$ for x = (r, w) $F(\mu) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(f_\mu(z_i)) + \lambda_1 \mathbb{E}_\mu[||X||^2]$ Proximal Gibbs: $p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2}\frac{\delta F(\mu)}{\delta \mu}(x)\right)$ $= \exp \left[-\frac{1}{\lambda_2} \left(\frac{1}{n} \sum_{i=1}^n \ell'_i(f_\mu(z_i)) h_x(z_i) + \lambda_1 ||x||^2 \right) \right]$ Strongly convex Bounded ($\leq B$) If $\sup |\ell'_i(f_\mu(\cdot))h_x(\cdot)| \leq B$, the proximal Gibbs measure p_μ satisfies the LSI with a constant α with $\alpha \ge \frac{2\lambda_1}{\lambda_2} \exp(-4B/\lambda_2)$

·· Bakry-Emery criterion (1085) and Holley-Strook small perturbation lemma (1987)

Proof outline of convergence

• MF-LD obeys the following nonlinear Fokker-Planck equation:

$$\begin{aligned} \partial_t \mu_t &= \lambda_2 \Delta_x \mu_t + \nabla \cdot \left[\mu_t \nabla \frac{\delta F(\mu_t)}{\delta \mu} \right] \\ &= \nabla \cdot \left[\left(\lambda_2 \nabla \log(\mu_t) + \nabla \frac{\delta F(\mu_t)}{\delta \mu} \right) \mu_t \right] \right) \\ &= -\nabla \cdot \left[v_t \mu_t \right] \\ &= -v_t \end{aligned}$$
 Vector field: $b(x, \mu_t)$
Then,
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{L}(\mu_t) &= \int \left\langle v_t, \nabla \frac{\delta \mathcal{L}(\mu_t)}{\delta \mu} \right\rangle \mathrm{d}\mu_t \quad (\because \text{continuity} \\ \text{equation}) \end{aligned}$$
 (Definition of p_{μ_t})
$$= \int \left\langle v_t, \nabla \frac{\delta F(\mu_t)}{\delta \mu} + \lambda_2 \nabla \log(\mu_t) \right\rangle \mathrm{d}\mu_t \end{aligned}$$

$$= -\int \|v_t\|^2 \mathrm{d}\mu_t = -\lambda_2^2 I(\mu_t) \|p_{\mu_t}$$

& Entropy sandwich

 $\leq -2\alpha\lambda_2^2 \mathrm{KL}(\mu_t || p_{\mu_t}) \leq -2\alpha\lambda_2(\mathcal{L}(\mu_t) - \mathcal{L}(\mu^*))$

 $\text{ Since } \frac{\delta F(\mu_t)}{\delta \mu} \text{ nonlinearly depends on } \mu_t \text{, we say "nonlinear Fokker-Planck".} \\ \text{GLD: } F(\mu) = \int L(x) d\mu \Rightarrow \frac{\delta F(\mu)}{\delta \mu}(\cdot) = L(\cdot)$

LSI &

Mass: $\mu_{\ell}(x)$

Other applications

Mean field Langevin dynamics can be applied to several problems where a distribution is optimized.

<u>Nonparametric density estimation</u> via MMD minimization

$$F(\mu) = \mathrm{MMD}^2(g * \mu, \hat{\mu}_n) + \lambda_1 \mathbb{E}_{\mu}[||x||^2]$$

k: positive definite kernel

$$MMD^{2}(\nu_{1},\nu_{2}) := ||k_{\nu_{1}} - k_{\nu_{2}}||_{\mathcal{H}_{k}}^{2}$$

where $k_{\mu} = \int k(x, \cdot) \mu(dx)$ (kernel embedding).

$$g(x) = \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$$

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i} : \text{Empirical distribution (training data)}$$
(see also Chizat (2022,TMLR))

<u>Variational inference</u> to approximate Bayesian posterior

$$F(\mu) = \mathrm{KSD}(\mu) + \lambda_1 \mathbb{E}_{\mu}[\|x\|^2]$$

(KSD: Kernel Stein Discrepancy from a posterior distribution)

Finite particle & discrete time algorithm

We have obtained a convergence of infinite width and continuous time dynamics.

Question:

Can we obtain a finite particle & discrete time (i.e., implementable) algorithm?

Difficulty

• SDE of interacting particles (McKean, Kac,..., 60')

Propagation of chaos [Sznitman, 1991; Lacker, 2021]:

The particles behave as if they are independent as the number of particles increases to infinity.

Finite particle approximation error can be amplified through time. \rightarrow It is difficult to bound the perturbation uniformly over time.

 A naïve evaluation gives exponential growth on time:

 $\exp(t)/N$

[Mei et al. (2018, Theorem 3)]

Weak interaction/Strong regularization in existing work

Outline of research

Infinite particles / Continuous time

Linear convergence of mean field Langevin:

[Nitanda, Wu, Suzuki (AISTATS2022)] [Chizat (TMLR2022)]

Finite particle / Discrete time

Double loop method:

- PDA [Nitanda, Wu, Suzuki: NeurIPS2021]
- P-SDCA [Oko, Suzuki, Wu, Nitanda: ICLR2022]
- Infinite-dim extension [Nishikawa, Suzuki, Nitanda: NeurIPS2022]

Difficult :

Propagation of chaos (McKean, Kac,..., 60's)

Finite particle / Continuous time

Uniform-in-time propagation of chaos:

- Super log-Sobolev ineq. [Suzuki, Nitanda, Wu (ICLR2023)]
- Leave-one-out type evaluation/Uniform-log-Sobolev [Chen, Ren, Wang (arXiv2022)]

Finite particle / Discrete time

Single loop method:

Time-space discretization, stochastic gradient [Suzuki, Wu, Nitanda (arXiv:2306.07221)]

(1) Double loop algorithm

Apply convex optimization techniques developed in finite dimensional settings.

Double loop algorithms

Time discretization $d\theta_t = -\nabla(\bar{g}^{(t)}(\theta)/\lambda_2)dt + \sqrt{2}d\xi_t.$ $\theta_k = \theta_{k-1} - \eta\nabla\bar{g}^{(t)}(\theta)/\lambda_2 + \sqrt{2\eta}\xi_{k-1}$

Computational complexity :

1. Inner loop: $\mathcal{L}(\hat{q}^{(t)}) - \mathcal{L}(q^*) \leq O(1/t)$

- **2. Outer loop:** $T_t = \tilde{O}\left(t^2 \exp(8/\lambda_2)/(\lambda_1\lambda_2)\right)$ (by GLD)
- ⇒Total: $O(\epsilon^{-3})$ times gradient update

The first polynomial time method

P-SDCA: Particle Stochastic Dual Coordinate Ascent [Oko, Suzuki, Wu, Nitanda: ICLR2022] Primal $\frac{\min P(p) = \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(\int p(\theta) h_i(\theta) \right) + \lambda_1 \int \|\theta\|^2 p(\theta) d\theta + \lambda_2 \int p(\theta) \log(p(\theta)) d\theta$ If by Fenchel duality theorem Dual $\ell_i^*(g) := \sup_{u \in \mathbb{R}} \{ug - \ell_i(u)\}$ $- \min_{g \in \mathbb{R}^n} D(g) = \frac{1}{n} \sum_{i=1}^n \ell_i^*(g_i) + \lambda_2 \log \left(\int q[g](\theta) d\theta \right)$ where $q[g](\theta) := \exp \left\{ -\frac{1}{\lambda_2} \left(\frac{1}{n} \sum_{i=1}^n h_i(\theta) g_i + \lambda_1 \|\theta\|^2 \right) \right\}$

- Randomly choose a coordinate of the dual variable and optimize the selected coordinate.
 - \rightarrow stochastic coordinate ascent

Computational complexity : # of outer loops to obtain the duality gap ϵ_P :

$$t_{\rm end} = 2\left(n + \frac{1}{\lambda_2 \gamma}\right) \log\left(\frac{nC}{\epsilon_P}\right)$$

- Exponential order convergence
- Relax the dependency on sample size

Outline of research

Infinite particles / Continuous time

Linear convergence of mean field Langevin:

[Nitanda, Wu, Suzuki (AISTATS2022)] [Chizat (TMLR2022)]

Finite particle / Discrete time

<u>Double loop</u> method:

- PDA [Nitanda, Wu, Suzuki: NeurIPS2021]
- P-SDCA [Oko, Suzuki, Wu, Nitanda: ICLR2022]
- Infinite-dim extension [Nishikawa, Suzuki, Nitanda: NeurIPS2022]

Difficult :

Propagation of chaos (McKean, Kac,..., 60's)

Finite particle / Continuous time

Uniform-in-time propagation of chaos:

- Super log-Sobolev ineq. [Suzuki, Nitanda, Wu (ICLR2023)]
- Leave-one-out type evaluation/Uniform-log-Sobolev [Chen, Ren, Wang (arXiv2022)]

[Suzuki, Wu, Nitanda: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. arXiv:2306.07221]

(2) Single loop method

$$dX_{t} = -\nabla \frac{\delta F(\mu_{t})}{\delta \mu} (X_{t}) dt + \sqrt{2\lambda_{2}} dB_{t}$$

$$(\text{time discretization})$$

$$X_{k+1}^{(i)} = X_{k}^{(i)} - \eta_{k} v_{k}^{i} + \sqrt{2\eta_{k}\lambda_{2}} \xi_{k}^{(i)}$$

$$where \mathbb{E}[v_{k}^{i}] = \nabla \frac{\delta F(\hat{\mu}_{k})}{\delta \mu} (X_{k}^{i}) \text{ and } \hat{\mu}_{k} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{k}^{(i)}}$$

$$(\text{stochastic gradient}) \qquad (\text{space discretization})$$

- > Noisy gradient descent on 2-layer NN with <u>finite width</u>.
- **Time discretization:** $t \rightarrow k\eta$ (η : step size, k: # of steps)
- **Space discretization:** μ_t is approximated by <u>N</u> particles

$$\mu_t \to \hat{\mu}_k = \frac{1}{N} \sum \delta_{X_k^{(i)}}$$

• Stochastic gradient: $\nabla \frac{\delta F(\mu)}{\delta \mu} \rightarrow v_k^i$

Numerical experiment

Convergence analysis

[Suzuki, Wu, Nitanda: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. arXiv:2306.07221]

Method (authors)	$\# ext{ of particles}$	Total complexity	Single loop	Mean-field
PDA^*	$\epsilon^{-2}\log(n)$	$C \epsilon^{-1}$	~	\checkmark
(Nitanda et al., 2021)	$\epsilon \log(n)$	$\Theta_{\epsilon} \epsilon$	^	
P-SDCA	$\epsilon^{-1}\log(n)$	$G\left(n+\frac{1}{2}\right)\log\left(\frac{n}{2}\right)$	×	\checkmark
(Oko et al., 2022)	$e^{-\log(n)}$	$\Im_{\epsilon}(n+\lambda) \Im_{\epsilon}(\epsilon)$	~	
GLD		$n \frac{\log(\epsilon^{-1})}{\epsilon}$		×
(Vempala and Wibisono, 2019)		$\epsilon ~~(\lambda lpha)^2$	•	~
SVRG-LD		$\left(n+\frac{\sqrt{n}}{\sqrt{n}}\right)\frac{\log(\epsilon^{-1})}{(\epsilon^{-1})}$	\checkmark	×
(Kinoshita and Suzuki, 2022)		$\begin{pmatrix} \kappa & \epsilon \end{pmatrix} (\lambda \alpha)^2$	•	
F-MFLD (ours)	ϵ^{-1}	$nE_* \frac{\log(\epsilon^{-1})}{(\lambda\alpha)}$	\checkmark	\checkmark
SGD-MFLD* (ours)	ϵ^{-1}	$\epsilon^{-1}E_*\frac{\log(\epsilon^{-1})}{(\lambda\alpha)}$	\checkmark	\checkmark
SGD-MFLD* (ii) (ours)	ϵ^{-1}	$\epsilon^{-1}(1+\sqrt{\lambda E_*})\frac{\log(\epsilon^{-1})}{(\lambda\alpha)^2}$	\checkmark	\checkmark
SVRG-MFLD (ours)	ϵ^{-1}	$\sqrt{n}E_*\frac{\log(\epsilon^{-1})}{(\lambda\alpha)} + n$	\checkmark	\checkmark
SVRG-MFLD (ii) (ours)	ϵ^{-1}	$(n^{1/3}E_* + \sqrt{n\lambda^{1/4}E_*^{3/4}})\frac{\log(\epsilon^{-1})}{(\lambda\alpha)} + n$	\checkmark	\checkmark

Table 1: Comparison of computational complexity to optimize an entropy-regularized finite-sum objective up to excess objective value ϵ , in terms of dataset size n, entropy regularization λ , and LSI constant α . Label * indicates the *online* setting, and the unlabeled methods are tailored to the *finite-sum* setting. "Meanfield" indicates the presence of particle interactions. "Single loop" indicates whether the algorithm requires an inner-loop MCMC sampling sub-routine at every step. "(ii)" indicates convergence rate under additional smoothness condition (Assumption 4), where $E_* = \frac{\tilde{L}^2}{\alpha\epsilon} + \frac{\tilde{L}}{\sqrt{\lambda\alpha\epsilon}}$. For double-loop algorithms (PDA and P-SDCA), G^* is the number of gradient evaluations required for MCMC sampling; for example, for MALA (Metropolis-adjusted Langevin algorithm) $G_{\epsilon} = O(n\alpha^{-5/2} \log(1/\epsilon)^{3/2})$, and for LMC (Langevin Monte Carlo) $G_{\epsilon} = O(n(\alpha\epsilon)^{-2} \log(\epsilon))$.

Uniform log-Sobolev inequality

Potential of the joint distribution $\mu_k^{(N)}$ on $\mathbb{R}^{d \times N}$:

$$\begin{split} \mathscr{L}^{N}(\mu_{k}^{(N)}) &= N \mathbb{E}_{\mathscr{X} \sim \mu_{k}^{(N)}} [F(\hat{\mu}_{\mathscr{X}})] + \lambda_{2} \mathrm{Ent}(\mu_{k}^{(N)}). \\ \text{where} \quad \hat{\mu}_{\mathscr{X}} &= \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} \qquad (\mathscr{X} = (X^{(i)})_{i=1}^{N}) \end{split}$$

> The finite particle dynamics is the Wasserstein gradient flow that minimizes \mathscr{L}^N .

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022] For any N, $\frac{1}{N} \mathscr{L}^{N}(\mu_{k}^{(N)}) - \mathcal{L}(\mu^{*}) \leq \frac{\lambda_{2}}{2\alpha} \left(\frac{1}{N} I(\mu_{k}^{(N)} || p^{(N)}) \right) + \frac{C_{\alpha, \lambda_{2}}}{N}$ where $p^{(N)}(\mathscr{X}) \propto \exp(-\frac{N}{\lambda_{2}} F(\hat{\mu} \mathscr{X}))$ Recall $\mathcal{L}(\mu) = F(\mu) + \lambda_{2} \operatorname{Ent}(\mu)$ [Chen, Ren, Wang. Uniform-in-time propagation of chaos

for mean field langevin dynamics. arXiv:2212.03050, 2022.]

Log Sobolev for Lipschitz cont obj²⁹

Proximal Gibbs measure:

$$p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2}\frac{\delta F(\mu)}{\delta \mu}(x)\right) \qquad p_{\mu} = \operatorname*{arg\,min}_{\nu \in \mathcal{P}}(\nu - \mu)\frac{\delta F(\mu)}{\delta \mu} + \lambda_2 \operatorname{Ent}(\nu)$$

Assumption: $F(\mu) = L(\mu) + \lambda_1 \mathbb{E}_{\mu}[||x||^2]$

 μ satisfies the LSI if there exits $\alpha > 0$ such that for any ϕ s.t. $\mu(\phi^2) = 1$, it holds that $\mu(\phi^2 \log(\phi^2)) \le \frac{2}{\alpha} \int \|\nabla \phi\|^2 d\mu$

1. Holley—Strook argument: [Bakry & Emery, 1985; Holley & Stroock, 1987]

$$\left\|\frac{\delta L(\mu)}{\delta \mu}\right\|_{\infty} \le R \qquad \Longrightarrow \qquad \alpha \ge \frac{\lambda_1}{\lambda_2} \exp\left(-\frac{4R}{\lambda_2}\right)$$

(New)

2. Lipschitz perturbation argument + Miclo's trick:

$$\sup_{x} \left\| \nabla \frac{\delta L(\mu)}{\delta \mu}(x) \right\| \leq R \qquad \text{(Lipschitz continuous)}$$

$$\Rightarrow \quad \alpha \geq \frac{\lambda_{1}}{2\lambda_{2}} \exp\left(-\frac{4R^{2}}{\lambda_{1}\lambda_{2}}\sqrt{2d/\pi}\right) \vee \left\{ \frac{4\lambda_{2}}{\lambda_{1}} + e^{\frac{R^{2}}{2\lambda_{1}\lambda_{2}}} \left(\frac{R}{\lambda_{1}} + \sqrt{\frac{2\lambda_{2}}{\lambda_{1}}}\right)^{2} \left[2 + d + \frac{d}{2}\log\left(\frac{\lambda_{2}}{\lambda_{1}}\right) + 4\frac{R^{2}}{\lambda_{1}\lambda_{2}}\right] \right\}^{-1}$$

Computational complexity

SG-MFLD

$$\begin{split} F(\mu) &= \frac{1}{n} \sum_{j=1}^{n} \ell_j(\mu) + \lambda_1 \mathbb{E}[\|x\|^2] & \text{(finite sum),} \\ v_k^i &= \frac{1}{B} \sum_{j \in I_k} \nabla \frac{\delta \ell_j(\hat{\mu}_k)}{\delta \mu} (X_k^{(i)}) + \lambda_1 x & \text{(stochastic gradient (Mini-batch size = B))} \end{split}$$

$$\mathscr{L}^{(N)}(\hat{\mu}_k) - \mathcal{L}(\mu^*) \lesssim \exp(-\lambda_2 \eta k \alpha) + \frac{1}{\alpha \lambda_2} \left(\eta^2 + \lambda_2 \eta + \frac{1}{N} + \frac{\eta + \sqrt{\eta \lambda_2}}{B} \right)$$

Iteration complexity:

By setting
$$\eta = O\left(\epsilon \alpha \wedge \sqrt{\lambda_2 \epsilon \alpha} \wedge (\lambda_2 \epsilon \alpha)^2 \frac{B^2}{\lambda_2} \wedge (\epsilon \alpha B \lambda_2)\right)$$
, the iteration complexity becomes

$$k = O\left(\frac{1}{\epsilon\alpha} + \sqrt{\frac{1}{\lambda_2\epsilon\alpha}} + \left(\frac{1}{\lambda_2\epsilon\alpha}\right)^2 \frac{\lambda_2}{B^2} + \frac{1}{\lambda_2\epsilon\alpha B}\right) \frac{1}{\lambda_2\alpha} \log(\epsilon^{-1})$$

Space

discr.

Time discr. **Stochastic**

approx.

to achieve $\epsilon + O(1/(\lambda_2 \alpha N))$ accuracy.

 \succ B = $\sqrt{1/(\lambda_2 \alpha \epsilon)}$ is the optimal mini-batch size. → k = O(log(ϵ^{-1})/ ϵ).

Variance reduction

SVRG-MFLD:

$$F(\mu) = \frac{1}{n} \sum_{j=1}^{n} f_j(\mu) = \frac{1}{n} \sum_{j=1}^{n} \ell_j(\mu) + \lambda \mathbb{E}[\|x\|^2] \quad \text{(find}$$

$$v_{k}^{i} = \frac{1}{B} \sum_{j \in I_{k}} \nabla \frac{\delta f_{j}(\hat{\mu}_{k})}{\delta \mu} (X_{k}^{(i)}) - \frac{1}{B} \sum_{j \in I_{k}} \nabla \frac{\delta f_{j}(\hat{\mu})}{\delta \mu} (\dot{X}^{(i)}) + \nabla \frac{\delta F(\hat{\mu})}{\delta \mu} (\dot{X}^{(i)}) + \nabla \frac{\delta F(\hat{\mu})}{$$

(finite sum),

Variance reduction

 $(\dot{X} \text{ is updated once} at every } m \text{ steps})$

of update :
$$\eta = \epsilon \alpha \wedge \sqrt{\lambda_2 \alpha \epsilon}$$
,
 $k = \frac{1}{\lambda_2 \alpha \eta} \log(1/\epsilon) = O\left(\frac{1}{\epsilon \alpha} + \sqrt{\frac{1}{\lambda_2 \alpha \epsilon}}\right) \frac{1}{\lambda_2 \alpha} \log(\epsilon^{-1})$ where $B = \sqrt{m} = n^{1/3}$.
Total complexity : $Bk + \frac{nk}{m} \lesssim n^{1/3} \left(\frac{1}{\alpha \epsilon} + \sqrt{\frac{1}{\lambda_2 \alpha \epsilon}}\right) \frac{1}{\lambda_2 \alpha} \log(\epsilon^{-1})$. \sqrt{n} by Kinoshita&Suzuki (2022)

Generalization analysis

- ℓ_i : logistic loss
- $h_z(x) = \overline{R} \cdot \tanh(\langle x_1, z \rangle + x_2)/2$
- Learning XOR function on high dimensional data.
 X ~ Unif({-1,1}^d) (up to freedom of rotation)
 Y = X_kX_l for k, l ∈ [d] with k ≠ l.

Q: Can we learn XOR function with GD? How large is the computational cost?

Reference	Algorithm	Technique	$\mid m$	n	t
(Ji and Telgarsky, 2020b)	SGD	perceptron	d^8	d^2/ϵ	d^2/ϵ
Theorem 2.1	SGD	perceptron	d^2	d^2/ϵ	d^2/ϵ
(Barak et al., 2022)	2-phase SGD	correlation	$\mathcal{O}(1)$	d^4/ϵ^2	d^2/ϵ^2
(Wei et al., 2018)	WF+noise	margin	∞	d/ϵ	∞
(Chizat and Bach, 2020)	WF	margin	∞	d/ϵ	∞
Theorem 3.3	scalar GF	margin	d^d	d/ϵ	∞

Table 1 of [Telgarsky: Feature selection and low test error in shallow low-rotation ReLu networks, ICLR2023].

Reference

- Setting 1: $n > d^2$
 - > Comp complexity: exp(O(d))
 - > Test error (classification error) = $O(\exp(-\sqrt{n}/d))$
- <u>Setting 2: *n* > *d*</u>
 - > Comp complexity: exp(O(d))
 - > Test error (classification error) = O(d/n)

Authors	regime/method	k-parity	class error	width	# iterations
Ji and Telgarsky (2019)	NTK/SGD	No	d^2/n	d^8	d^2/ϵ
Telgarsky (2023)	NTK/SGD	No	d^2/n	d^2	d^2/ϵ
Barak et al. (2022)	Two phase SGD	Yes	$d^{(k+1)/2} / \sqrt{n}$	O(1)	d/ϵ^2
Wei et al. (2019)	mean-field/GF	No	d/n	∞	∞
Telgarsky (2023)	mean-field/GF	No	d/n	d^d	∞
Ours	mean-field/MFLD	Yes	$\exp(-O(\sqrt{n}/d))$	$e^{O(d)}$	$e^{O(d)}$
Ours	mean-field/MFLD	Yes	d/n	$e^{O(d)}$	$e^{O(d)}$

Reference

Conclusion

Mean field Langevin dynamics

- Entropy sandwich
 - Connecting <u>duality gap</u> with KL-div between the current solution and its proximal Gibbs measure.
 - Exponential convergence

$$\lambda_{2} \mathrm{KL}(\mu || \mu^{*}) = \mathcal{L}(\mu) - \mathcal{L}(\mu^{*}) \leq \mathcal{L}(\mu) - \mathcal{D}(g_{\mu}) = \lambda_{2} \mathrm{KL}(\mu || p_{\mu})$$
$$\mathcal{L}(\mu_{t}) - \mathcal{L}(\mu^{*}) \leq \exp(-2\alpha\lambda_{2}t)(\mathcal{L}(\mu_{0}) - \mathcal{L}(\mu^{*}))$$

• Finite particle approximation > Uniform-in-time propagation of chaos $\mathscr{L}^{(N)}(\hat{\mu}_{k+1}) - \mathcal{L}(\mu^*)$ $\leq \exp(-\lambda_2\eta_k\alpha) \left(\mathscr{L}^{(N)}(\hat{\mu}_k) - \mathcal{L}(\mu^*)\right) + C\left(\eta_k^3 + \lambda_2\eta_k^2 + \frac{\eta_k}{N} + \eta_k^{\frac{3}{2}}\lambda_2^{\frac{1}{2}}\sigma_k\tilde{\sigma}_k\right)$

Many other interesting topics:

- Entropic fictious play [Chen, Ren, Wang (2022); Nitanda et al. (ICML2023)]
- Learning theory, better sample complexity than NTK [Suzuki et al. (2023)]
- Application to Reinforcement Learning: Policy-Gradient [Yamamoto et al. (2023)]
- Infinite dimensional mean field Langevin [Nishikawa, Suzuki, Nitanda (NeurIPS2022)]