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Noisy gradient descent 3

Noise

Gradient descent

Optimization of neural network is basically non-convex.

➢ Noisy gradient descent (e.g, SGD) is effective for non-

convex optimization.

Noisy perturbation is helpful to escape a local minimum. 

➢ Likely converges to a flat global minimum.



Gradient Langevin Dynamics (GLD) 4

(Gradient Langevin dynamics)

(Non-convex)

(Euler-Maruyama scheme)

𝛽: inverse temperature

Discretization
[Gelfand and Mitter (1991); Borkar and Mitter

(1999); Welling and Teh (2011)]

Stationary distribution：
Can stay around the 

global minimum of 𝐿(𝑥).



GLD as a Wasserstein gradient flow5

: Distribution of 𝑋𝑡 (we can assume it has a density)

PDE that describes 𝜇𝑡’s dynamics [Fokker-Planck equation]:

[linear w.r.t. 𝝁]

= Stationary distribution

This is the Wasserstein gradient flow to minimize the following objective:

c.f., Donsker-Varadan duality formula



Objective of mean field NN 6

convex strongly convex = strongly convex+

Vanilla GLD

Linear

Nonlinear extension!

Application: 

➢ Optimization of 2-layer neural network in mean field regime

➢ Variational inference

Convex objective



Example of loss function 7

Loss function (empirical risk + regularization):

𝑀 → ∞

…

★Mean field limit:

Non-linear with respect to the parameters 𝑟𝑗, 𝑤𝑗 𝑗=1

𝑀
.

Convex w.r.t. 𝜇 if the loss ℓ𝑖 is convex (e.g., squared / logistic loss).

[Nitanda&Suzuki, 2017][Chizat&Bach, 2018][Mei, Montanari&Nguyen, 2018][Rotskoff&Vanden-Eijnden, 2018]

Linear with respect to 𝜇.
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Particles move to fit the 

model to the data.

(distribution)

The parameter of one neuron  



General form of mean field LD 9

convex

Mean field Langevin dynamics: 

➢ SDE the Fokker-Planck equation of which corresponds to the Wasserstein GF:

The first variation 𝛿𝐹
𝛿𝜇
: 𝒫 × ℝ𝑑 → ℝ is defined as a continuous functional such as 

Definition (first variation)

Distribution dependent SDE

𝐹

Gradient

GLD: , 



Proximal Gibbs measure 10

𝐹

Gradient

Minimizer

Proximal Gibbs measure

➢The proximal Gibbs measure is a kind of “tentative” target. 

➢ It plays important role in the convergence analysis.

Linearized objective at 𝝁: 



Dual objective (informal)
11

Primal

Dual

=

(Fenchel’s duality theorem)

Primal-Dual variable correspondence: 

𝐹

Gradient

Duality gap and divergence: 

•

•
(optimality condition)

[Nitanda, Oko, Wu, Suzuki (ICML2023); Nitanda, Wu, Suzuki (AISTATS2022); Oko, Suzuki, Nitanda, 

Wu (ICLR2022)]

(P) (D) (P)



Entropy sandwich 12

Proximal Gibbs measure:

Theorem (Entropy sandwich) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

=



Convergence rate 13

Proximal Gibbs measure:

Theorem (Linear convergence) [Nitanda, Wu, Suzuki (AISTATS2022)][Chizat (2022)]

Assumption (Log-Sobolev inequality)

KL-div Fisher-div

There exists 𝛼 > 0 such that for any probability measure 𝜈 (abs. cont. w.r.t. 𝑝𝜇),

If 𝑝𝜇𝑡 satisfies the LSI condition for any 𝑡 ≥ 0, then 

This is a non-linear extension of well known GLD convergence analysis.

c.f., Polyak-Lojasiewicz condition



Example 14

L2-regularized loss function for mean field 2-layer NN: 

Proximal Gibbs: 

If sup
𝑧

ℓ𝑖
′ 𝑓𝜇(⋅) ℎ𝑥(⋅) ≤ 𝐵, the proximal Gibbs measure 𝑝𝜇 satisfies the LSI 

with a constant 𝛼 with

∵ Bakry-Emery criterion (1085) and Holley-Strook small perturbation lemma (1987)

Bounded (≤ 𝐵) Strongly convex

where



Proof outline of convergence
• MF-LD obeys the following nonlinear Fokker-

Planck equation:

15

Vector field: 𝑏(𝑥, 𝜇𝑡)

Mass: 𝜇𝑡(𝑥)

※ Since 𝛿𝐹(𝜇𝑡)
𝛿𝜇

nonlinearly depends on 𝜇𝑡, we say “nonlinear Fokker-Planck”.

(Definition of 𝑝𝜇𝑡)

=: −𝑣𝑡
Then, 

[Continuity equation]

(∵continuity 

equation)

LSI & Entropy sandwich



Other applications 16

• Nonparametric density estimation via MMD minimization

𝑘: positive definite kernel

: Empirical distribution (training data)➢

➢

• Variational inference to approximate Bayesian posterior

Mean field Langevin dynamics can be applied to several 

problems where a distribution is optimized.

where 𝑘𝜇 = ∫ 𝑘 𝑥,⋅ 𝜇(d𝑥) (kernel embedding).

(KSD: Kernel Stein Discrepancy from a posterior distribution)

(see also Chizat (2022,TMLR))



Finite particle & 
discrete time algorithm

17



We have obtained a convergence of 

infinite width and continuous time dynamics.

Question:

Can we obtain a finite particle & discrete 
time (i.e., implementable) algorithm?

18

(distribution of 𝑋𝑡)

Neuron 

𝑥
(vector field)

(Finite particle approximation)



Difficulty

• SDE of interacting particles (McKean, Kac,…, 60’)

19

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

Finite particle approximation error can be amplified through time.

→ It is difficult to bound the perturbation uniformly over time.

The particles behave as if they are independent 

as the number of particles increases to infinity. 

Propagation of chaos [Sznitman, 1991; Lacker, 2021]:

• A naïve evaluation 
gives exponential 
growth on time: 

➢ Weak interaction/Strong 
regularization in existing 
work

exp 𝑡 /𝑁
[Mei et al. (2018, Theorem 3)]



Outline of research 20

Linear convergence of 

mean field Langevin:
[Nitanda, Wu, Suzuki (AISTATS2022)]

[Chizat (TMLR2022)]

• PDA [Nitanda, Wu, Suzuki: NeurIPS2021] 

• P-SDCA [Oko, Suzuki, Wu, Nitanda: 

ICLR2022]

• Infinite-dim extension [Nishikawa, Suzuki, 

Nitanda: NeurIPS2022]

Double loop method: 

Uniform-in-time propagation of chaos:

• Super log-Sobolev ineq.
[Suzuki, Nitanda, Wu (ICLR2023)]

• Leave-one-out type 

evaluation/Uniform-log-Sobolev
[Chen, Ren, Wang (arXiv2022)]

Single loop method:

Time-space discretization, 

stochastic gradient

Difficult：

Propagation of chaos (McKean, Kac,…, 60’s)

Infinite particles / Continuous time

Finite particle / Continuous time

Finite particle / Discrete time

Finite particle / Discrete time

[Suzuki, Wu, Nitanda

(arXiv:2306.07221)]



(1) Double loop algorithm 21

Approximate 𝑞𝑡
by 𝑀 particles

Update by 

gradient descent

Sampling

Update the target distribution

(Gradient descent)

Apply convex optimization techniques developed in finite dimensional settings.



Double loop algorithms 22

Approximate this by a linear functional of 𝑞.

Approx (linear approx)

Solution:

→ We can sample particles from this distribution by 

using the following GLD.

Time discretization

ഥ𝒈(𝒕) is determined by dual averaging method.

PDA: 
Particle Dual Averaging

P-SDCA:
Particle Stochastic Dual Coordinate Ascent

1. Inner loop: 

2. Outer loop: 

Computational complexity：

(by GLD)

⇒Total: 𝑶(𝝐−𝟑) times gradient update

➢ The first polynomial time method

Primal

Dual

=

by Fenchel duality theorem

where

• Randomly choose a coordinate of the 

dual variable and optimize the 

selected coordinate.
→ stochastic coordinate ascent

Computational complexity：
# of outer loops to obtain the duality gap 𝝐𝑷：

➢ Exponential order convergence

➢ Relax the dependency on sample 

size

[Nitanda, Wu, Suzuki: NeurIPS2021] [Oko, Suzuki, Wu, Nitanda: ICLR2022]



Outline of research 23

Linear convergence of 

mean field Langevin:
[Nitanda, Wu, Suzuki (AISTATS2022)]

[Chizat (TMLR2022)]

• PDA [Nitanda, Wu, Suzuki: NeurIPS2021] 

• P-SDCA [Oko, Suzuki, Wu, Nitanda: 

ICLR2022]

• Infinite-dim extension [Nishikawa, Suzuki, 

Nitanda: NeurIPS2022]

Double loop method: 

Uniform-in-time propagation of chaos:

• Super log-Sobolev ineq.
[Suzuki, Nitanda, Wu (ICLR2023)]

• Leave-one-out type 

evaluation/Uniform-log-Sobolev
[Chen, Ren, Wang (arXiv2022)]

Single loop method:

Time-space discretization, 

stochastic gradient

Difficult：

Propagation of chaos (McKean, Kac,…, 60’s)

Infinite particles / Continuous time

Finite particle / Continuous time

Finite particle / Discrete time

Finite particle / Discrete time

[Suzuki, Wu, Nitanda

(arXiv:2306.07221)]

[Suzuki, Wu, Nitanda: Convergence of mean-field Langevin dynamics: Time and space 

discretization, stochastic gradient, and variance reduction. arXiv:2306.07221]



(2) Single loop method 24

• Time discretization: 𝑡 → 𝑘𝜂 (𝜂: step size, 𝑘: # of steps)

• Space discretization: 𝜇𝑡 is approximatd by 𝑁 particles

• Stochastic gradient: ∇
𝛿𝐹 𝜇

𝛿𝜇
→ 𝑣𝑘

𝑖

𝜇𝑡 → ො𝜇𝑘 =
1
𝑁∑𝛿𝑋𝑘

(𝑖)

where and

(stochastic gradient) (space discretization)

(time discretization)

➢ Noisy gradient descent on 2-layer NN with finite width.

𝑁 particles 𝑋𝑘
𝑖

𝑖=1

𝑁



Numerical experiment 25

Training error with 𝑟 𝑥 = 𝑥 4 Test error with 𝑟 𝑥 = 𝑥 2

𝑁 → ∞



Convergence analysis 26

Time

discr.

Space

discr.

Stochastic

approx.

Under smoothness and boundedness of the loss function, it holds that

Suppose that 𝑝𝜇 satisfies log-Sobolev inequality with a constant 𝛼.

Theorem (One-step update) [Suzuki, Wu, Nitanda (2023)]

: proximal Gibbs measure

1. 𝐹:𝒫 → ℝ is convex and has a form of 𝑭 𝝁 = 𝑳 𝝁 + 𝝀𝟏𝔼𝝁 𝒙 𝟐 .

2. (smoothness) ∇
𝛿𝐿 𝜇

𝛿𝜇
𝑥 −∇

𝛿𝐿 𝜈

𝛿𝜇
𝑦 ≤ 𝐶(𝑊2 𝜇, 𝜈 + 𝑥 − 𝑦 ) and

(boundedness) ∇
𝛿𝐿 𝜇

𝛿𝜇
𝑥 ≤ 𝑅.

Assumption:

(+ second order differentiability)

Naïve bound:

[Suzuki, Wu, Nitanda: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. arXiv:2306.07221]
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Uniform log-Sobolev inequality 28

𝑋𝑘
(1)

𝑋𝑘
(2)

𝑋𝑘
(𝑁) 𝒳𝑘 = 𝑋𝑘

𝑖

𝑖=1

𝑁
∼ 𝜇𝑘

𝑁
: Joint distribution 

of 𝑁 particles.

Potential of the joint distribution 𝝁𝒌
(𝑵)

on ℝ𝒅×𝑵 :

where

(Fisher divergence)

where

➢ The finite particle dynamics is the Wasserstein gradient flow that minimizes       .

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022]

Recall [Chen, Ren, Wang. Uniform-in-time propagation of chaos 

for mean field langevin dynamics. arXiv:2212.03050, 2022.]

For any 𝑵,



Log Sobolev for Lipschitz cont obj 29

Proximal Gibbs measure:

Assumption:

1. Holley—Strook argument:

2. Lipschitz perturbation argument + Miclo’s trick:

𝜇 satisfies the LSI if there exits 𝛼 > 0 such that for any 𝜙 s.t. 𝜇 𝜙2 = 1, it holds that 

⇒

⇒

(Lipschitz continuous)

[Bakry & Emery, 1985; Holley & Stroock, 1987]

[Cattiaux & Guillin, 2022; Bardet et al., 2018]

(New)



Computational complexity 30

Time

discr.

Space

discr.

Stochastic

approx.

SG-MFLD

Iteration complexity:

to achieve 𝜖 + 𝑂(1/(𝜆2𝛼𝑁)) accuracy.

By setting                                                              , 

the iteration complexity becomes 

➢ 𝐵 = 1/(𝜆2𝛼𝜖) is the optimal mini-batch size. → 𝑘 = 𝑂 Τlog 𝜖−1 𝜖 .

(finite sum),

(stochastic gradient)

(Mini-batch size = 𝐵)



Variance reduction 31

SVRG-MFLD:

Time

discr.
Space

discr.
Stochastic

approx.

Variance reduction

( ሶ𝑋 is updated once 

at every 𝑚 steps)

Tighter than the analysis 

in linear GLD  [Kinoshita, 

Suzuki: NeurIPS2022]
(𝑚 = 𝐵 = 𝑛)

(finite sum),

# of update：

Total complexity：

where 𝐵 = 𝑚 = 𝑛1/3.

𝑛 by Kinoshita&Suzuki

(2022)



Generalization analysis

• ℓ𝑖 : logistic loss

• ℎ𝑧 𝑥 = ത𝑅 ⋅ tanh 𝑥1, 𝑧 + 𝑥2 /2

32

• Learning XOR function on high dimensional data. 

➢ 𝑋 ∼ Unif( −1,1 𝑑)    (up to freedom of rotation)

➢ 𝑌 = 𝑋𝑘𝑋𝑙 for 𝑘, 𝑙 ∈ 𝑑 with 𝑘 ≠ 𝑙.

Table 1 of [Telgarsky: Feature selection and low test 

error in shallow low-rotation ReLu networks, ICLR2023].

Q: Can we learn XOR function with GD? 

How large is the computational cost?

Reference



• Setting 1: 𝑛 > 𝑑2

33

• Setting 2: 𝑛 > 𝑑

➢ Test error (classification error) = 𝐎(exp(− 𝒏/𝒅))

➢ Comp complexity: exp(O(𝑑))

➢ Test error (classification error) = 𝐎( Τ𝒅 𝒏)

➢ Comp complexity: exp(O(𝑑))

Reference



Conclusion 34

Many other interesting topics:

• Entropic fictious play [Chen, Ren, Wang (2022); Nitanda et al. (ICML2023)]

• Learning theory, better sample complexity than NTK [Suzuki et al. (2023)]  

• Application to Reinforcement Learning: Policy-Gradient [Yamamoto et al. (2023)]

• Infinite dimensional mean field Langevin [Nishikawa, Suzuki, Nitanda (NeurIPS2022)]

Mean field Langevin dynamics

• Entropy sandwich
➢ Connecting duality gap with KL-div between the 

current solution and its proximal Gibbs measure. 

➢ Exponential convergence

• Finite particle approximation

➢ Uniform-in-time propagation of chaos
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